Funding
This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.
Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.
The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.
CATHODE FOR OXYGEN-RICH ENVIRONMENT (ARTES 4.0 AT 4B.172)
The objective of the activity is to develop, manufacture and test a cathode for use as a neutraliser in electric propulsion systemsand suitable for operation in an oxygen-rich environment for a long duration of time (e.g. >5 years).Targeted Improvements:Enabling cathode capable of operating in an oxygen-rich environment for more than a few hours.Description: Platforms operating in Very Low Earth Orbit (VLEO) require prolonged and/or continu…
L-BAND GALLIUM NITRIDE LOW NOISE AMPLIFIER-BASED RF FRONT-END (ARTES AT 5C.465) (ON DELEGATION REQUEST)
The objective of the activity is to design a compact L-band RF front-end for telecom applications which is based on a GaN Low NoiseAmplifier (LNA). A breadboard of a GaN microwave monolithic integrated circuit will be developed and tested. The RF front-end including the filtering function shall be modelled.Targeted Improvements: up to 30% mass and volume saving of the RF front-end (LNA and filtering) and 20 dB improvement of the LNA dynamic ra…
ARTIFICIAL INTELLIGENCE/MACHINE LEARNING FRONT-END MODULE FOR SATCOM 5G/6G INTEGRATED ACCESS-BACKHAUL TRANSCEIVERS (ARTES 4.0 SPL 5G/6G 6B.119)
The objective of the activity is to develop, implement and test a breadboard of a digital transceiver front-end capable of switching between access and backhaul modes of operation for integrated satcom-terrestrial 5G/6G networks. The transceiver core shall be supported by an AI/ML engine implemented for a set of commercially available hardware and software platforms. The activity shall also provide the testbed to test the AI/ML-based transceiv…
SPACEBORNE W-BAND HIGH POWER TRAVELLING WAVE TUBE (ARTES AT 5C.486) (ON DELEGATION REQUEST)
The objective of this activity is to design, develop and test a breadboard of high-power W-band travelling wave tube (TWT) to meet the requirements of Very High Throughput Satellites.Targeted Improvements:Enable a European source of W-band TWT with 5 GHz instantaneous bandwidth, 100 W power output and at least 30% efficiency.Description:High Throughput Satellites (HTS) and Very High Throughput Satellites (VHTS) already use Q/V band frequencies…
PRECODING FOR LOW EARTH ORBIT SATELLITE SYSTEMS (ARTES AT 3C.027) (ON DELEGATION REQUEST) - EXPRO+
The objective of the activity is to develop precoding techniques for the forward link of multi-beam LEO satellite systems operatingin full frequency reuse. The activity will target the conventional single-satellite precoding, as well as precoding across adjacentsatellites having beams with overlapping footprints. The developed techniques will be implemented and tested in a software simulator able to assess the performance at both link level an…
SPECTRUM SHARING TECHNIQUES FOR BEYOND 5G (B5G) AND 6G 3D NETWORKS (ARTES 4.0 SPL 5G/6G 3A.185)
The objective of the activity is to investigate and develop spectrum reuse and sharing techniques for integrated NTN-TN 3D networksthat allow them to pool, share, and rapidly reallocate spectrum on demand among their heterogeneous components/segments. The techniques will be prototyped in a testbed to be implemented as part of the activity.Targeted improvements:Enabling spectrum reuse and sharing in integrated NTN-NT 3D networks.Description:Spe…
RELIABLE LEO OPTICAL FEEDER LINK DEMONSTRATION (ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT 6C.007)
Objective: To develop technologies and to demonstrate a reliable optical communication uplink from an optical ground station to a satellite in low Earth orbit.Targeted Improvements: First ever demonstration that reliable optical feeder uplinks to telecommunication satellites in LEO are feasible. Description: Optical communication promises the possibility to transmit virtually unlimited amounts of data from optical ground stations (OGS) to futu…
EXTENSION OF ELECTRICAL POWER SYSTEM VOLTAGE TO 300V (ARTES AT 4F.146) (ON DELEGATION REQUEST)
The objective of the activity is to identify, design, manufacture and test critical technology and hardware elements needed for a high voltage electric power system (EPS) for high power telecom applications. This shall include typical primary and secondary DCDC converters and protection circuits (e.g. latching current limiters). Targeted Improvements:- Increase bus voltage up to > 300V, enabling direct drive for electric propulsion;- Reduce…
KA-BAND RADIO FREQUENCY FRONT-END RESISTANT TO INTENTIONAL INTERFERENCE FOR SECURE TTC (ARTES 4.0 4S SPL 4G.041)
The objective of the activity is to design, manufacture and test a Scaled Engineering Model of rugged Ka-band RF front-end for secure TTC applications that will enable technologies for mitigation of intentional interference. Targeted Improvements: Ability to operate under severe Radio Frequency Interference. Description: TTC is a key equipment for all satellites since it provides the umbilical cord to the control station(s). It has to operate…
LIGHTWEIGHT ONBOARD FORWARD ERROR CORRECTION DECODING FOR HIGH DATA RATE OPTICAL INTER-SATELLITE LINKS (ARTES 4.0 SL SPL 5F.038)
Objective: The objective of this activity is to design, simulate and test a high data rate Forward Error Correction decoder and demonstrate this via a breadboard running at a data rate of at least 100 Gigabits per second (Gbps) with soft decision decoding. The decoder shall target next generation optical inter-satellite links and shall be made lightweight in terms of onboard resources usage. Targeted Improvements:- 10 times improvement of the…
CRITICAL BREADBOARDING ENABLING THE REMOVAL OF FAILED SMALL SATELLITES FROM LOW EARTH ORBIT (ARTES AT 4A.085) (ON DELEGATION REQUEST)
The objective of the activity is to design, manufacture and test technologies enabling the removal of failed small satellites (e.g.tumbling) from low earth orbit. Several breadboards will be developed and tested to reduce tumbling and to enable rendezvous and capture.Targeted Improvements: Enabling de-orbiting of large constellations of low Earth orbit telecommunication satellites. Description: In the coming years it is expected that the numbe…
W-BAND HIGH POWER AMPLIFIER FOR THE GROUND SEGMENT (ARTES AT 6B.120) (ON DELEGATION REQUEST)
Objective: The objective of the activity is to design, manufacture and test a W-band HPA for the ground segment. Targeted Improvements: Enabling W-band feeder uplink communications. Description: The use of W-band (71-76 GHz for downlink and 81-86 for uplink GHz) is expected to significantly increase the available bandwidth for Very High Throughput Satellite Systems (VHTS). W-band spectrum is also expected to reduce the number of gateways requi…
END-TO-END ADAPTIVE OPTICS BI-DIRECTIONAL MODELLING TOOL FOR OPTICAL FEEDER LINKS (ARTES 4.0 SL SPL 6C.035) - EXPRO+
Objective: This activity aims at developing a modular software tool allowing to simulate the improvement from employing adaptive optics (AO) systems in bidirectional optical ground station (OGS) to satellites optical communication and quantum links scenarios (e.g. GEO, LEO, MEO). Targeted Improvements: 50% improvement of design time and computation time to dimension optical communication systems operating through atmospheric turbulence enhance…
BATTERIES BASED ON EUROPEAN COMMERCIAL OF THE SHELF BATTERY CELL TECHNOLOGY (ARTES AT 4F.145) (ON DELEGATION REQUEST)
The objective of this activity is to develop, design, manufacture and test a battery with European Commercial Off The Shelf (COTS) battery cells for telecom space applications. Targeted Improvements:- At least 20% mass reduction at battery level;- Enabling European independency and continuity of technology sourcing. Description: Current state-of-the-art space Li-Ion cell technology can provide around 180 Wh/kg, while Li-Ion COTS cell technolog…
IN-ORBIT W-BAND CHANNEL CHARACTERISATION FROM GEOSTATIONARY ORBIT (ARTES AT 3E.018) (ON DELEGATION REQUEST)
The objective of the activity is to carry out characterisation of the W-band channel affected by diurnal and long duration atmospheric changes, enabling future W-band system sizing. The activity will design, develop and test a W-band terminal hosted on a geostationary Earth orbit (GEO) spacecraft, and the associated ground terminals. Targeted Improvements:Increase in the acquisition time of W-band channel measurements for stable atmospheric pa…
ANTENNA FOR UNIVERSAL SATELLITE-TERRESTRIAL 5G LAND MOBILE TERMINALS (ARTES SPL 5G 7C.061) (UPON DELEGATION REQUEST)
Upon Delegation Request (*) The objective of the activity is to develop and validate a mobile terminal antenna that supports satellite connectivity and terrestrial 5G. A prototype of the antenna will be manufactured and tested in a laboratory environment. Targeted Improvements: Terminal size, weight and power reduction (30 to 50%) achieved by integrating 5G satellite and terrestrial antenna systems.The integration of satellite communications…
MULTI-BEAM RECEIVE ANTENNA FOR SATELLITE-BASED AIR TRAFFIC SURVEILLANCE (ARTES 4.0 AT 5B.225)
Objective: The objective of the activity is to design, implement and test a scaled engineering model with critical functions of a multi-beam receive antenna for satellite-based air traffic surveillance in the frequency range 950 - 1100 MHz, taking into account narrow beamwidth, directivity and mechanical constraints. Targeted Improvements:- Two-fold increase, compared to the state of the art, in the number of beams covering the visible Earth (…
BUILDING BLOCKS FOR DIGITAL TWIN OF ATTITUDE AND ORBIT CONTROL SYSTEM EQUIPMENTS (ARTES 4.0 AT 4C.068)
The objective of the activity is to develop and test a cyber-physical modelling for a Digital Twin of AOCS sensors. A multi-physic model-based Digital Twin can be used to perform on-board self-calibration employing data-driven techniques and simplify the ground verification of new satellite platforms by having a direct dispersion of the different parameters, hence reducing complex Monte Carlodispersions. Targeted Improvements: Enabling on-boar…
WDM LASER SOURCES AT 1064NM (ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT 5F.018) - RE-ISSUE
Objective: The objective of the activity is to develop low noise and small footprint semiconductor laser diodes at 1064nm compatible with WDM operation and the associated low-power consumption driving electronics. The activity shall also investigate technologicaloptions to further reduce the footprint and the power consumption of the low-power section of an optical transmitter at 1064nm (e.g., integration of multiple lasers diodes, optical mod…
BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)
The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…
WDM HIGH-POWER OPTICAL AMPLIFIER AT 1064NM (ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT 5F.020)
Objective: The objective is to develop a high-power and high-efficient optical booster amplifier, compatible with WDM operation at 1064nm wavelength range. Two versions, with different output optical power and wall-plug efficiency requirements, are to be developed to address operation under space and ground environmental conditions. Targeted Improvements:Strategic component not available inESA's Member States nor in Cooperating/Associated…
IN-ORBIT EXPERIMENT OF AN INFLATABLE DE-ORBITING DRAG DEVICE FOR SMALL SATELLITES (ARTES AT 3E.003) - RE-ISSUE (1-10674)
The objective of the activity is to design, manufacture and test in orbit an inflatable drag device for de-orbiting small satellites from Low Earth Orbit (LEO). Performance data will be gathered (deployment imagery and positional telemetry) in a fully representative space environment (including drag effects) that would not be possible to simulate or test on ground. Targeted Improvements:Reduce de-orbit time by a factor of 5 (for altitudes of 4…
RAPID AND FLEXIBLE END-TO-END MANUFACTURING PROCESS FOR COMPLEX-SHAPED COMPOSITE REFLECTOR ANTENNA (ARTES 4.0 AT 5B.226)
The objective of the activity is to develop rapid and flexible advanced manufacturing techniques, with a full digital workflow, forhigh volume production of complex-shaped composite reflector antennas from 1 to 3.5 metres in diameter.Targeted Improvements:Reduction in composite reflector manufacturing time by a factor of five in comparison to standard metallic mould processes.Description:Today, the manufacturing lead time of reflector antennas…
ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED PHOTON SOURCES FOR SPACE BASED QUANTUM TELECOMMUNICATIONS (5F.014/SL.031) (ON DELEGATION REQUEST)
Objective:The objective of the activity is to design, manufacture and test integrated entangled photon source and faint pulse source for space Quantum Key Distribution. The high level integration combines low mass, volume, and higher reliability and is therefore ideally suited for space applications. The expected output of the activity is an engineering model of an entangled photon source and a prototype faint pulse source, which have been eva…
ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: SPACE QUALIFIED FAINT PULSE LASER SOURCE FOR QUANTUM KEY DISTRIBUTION (5G.003/SL.012)(ON DELEGATION REQUEST)
Objective:The objective of the activity is to develop and qualify a faint pulse laser source for space-based quantum key distribution systems.Targeted Improvements:Increase the technical readiness level of faint pulse laser sources suitable for quantum key distribution applications from 5 to 7. Description:Quantum key distribution systems using protocols based on faint laser pulses require a photon source emitting less than one photon per puls…