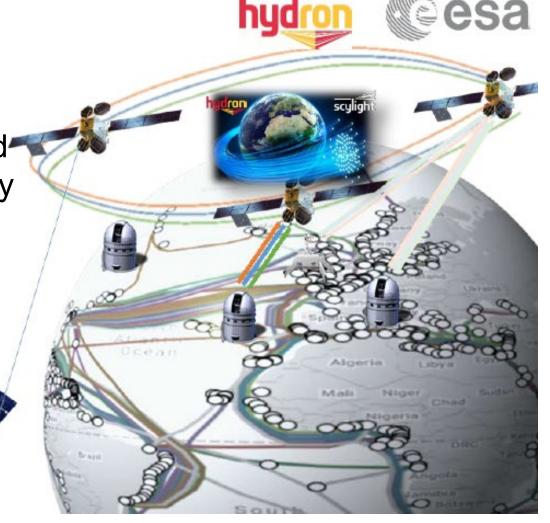


DEFENCE AND SPACE

Airbus HydRON Team Athens, 15 May 2023

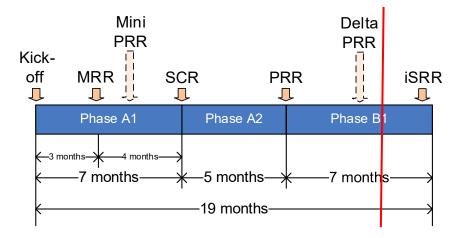
HydRON Vision


HydRON High throughput Optical Network

ESA Vision

"Fibre in the Sky" technology integrated in terrestrial networks at Terabit capacity demonstrated by European and Canadian Industries

6th Annual ScyLight Conference / Workshop



HydRON Airbus team activities

6th Annual ScyLight Conference / Workshop

HydRON Demonstration System (HydRON-DS) Phase A/B1 study, with the objective to pave the way for an Implementation Phase (B2/C/D/E1) of the HydRON-DS in order to demonstrate HydRON networking capabilities and operational concepts in an end-to-end context

HydRON Simulator Testbed (HydRON-SimTB) development with the goal of consolidating the HydRON concept, system functionalities & end-to-end system architecture mainly by network protocol and algorithm evaluation, analysis of various network designs and to support architecture trade-offs for the HydRON-DS

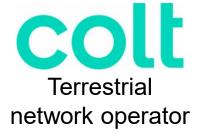
... together with the team as follows:

hydron DS Phase A/B1

HydRON consortium

Optical Satellite Payload

Optical Ground
Stations



User consultancy

HydRON System Prime,
Operator and future
Service Provider

Strong expertise and dedication in optical communication and network solutions

Network management

Availability simulations

User consultancy and LEO host opportunity

HydRON-DS – Current status

Delta PRR recently introduced by ESA as a result of CM 22 with a baseline redirection

- Updated baseline and trade-off of options
- Co-location meeting passed begin of April
- Delta PRR currently under finalisation

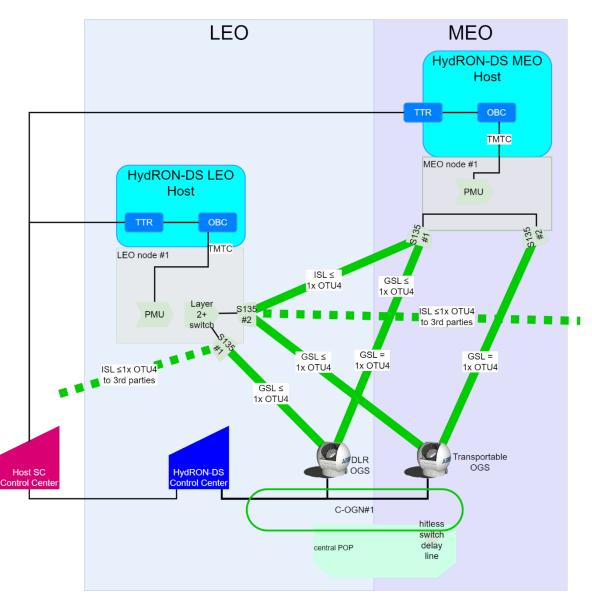
Next steps:

- Operator workshop
- o Baseline consolidation and iSRR preparation

Two major scenarios:

- LEO + MEO (TB#2 in ESA terms)
- LEO only (TB#1 in ESA terms)

6th Annual ScyLight Conference / Workshop


HydRON-DS – Technical baseline

Current proposed baseline for MEO + LEO scenario:

- 2 SCOT 135 on MEO + 2 SCOT 135 on LEO
- 100 Gbps / 10Gbps / transparent ISL and GSL
- Atmos. turbulence mitigation by coding
- Packet (MPLS) switch on LEO
- Reuse of existing OGS from DLR-IKN
- Demo of hitless GSL link switch-over
- Several options (+ circuit switch on MEO, + WDM on LEO/MEO, - Multi Purpose Transceiver Module)

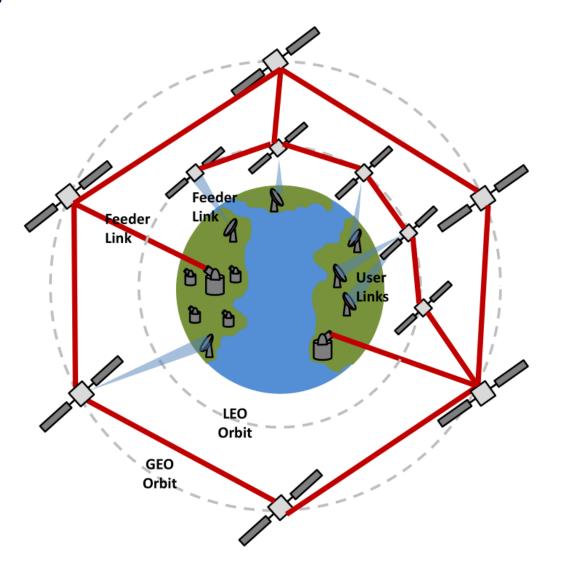
Outcome of trade-off and final baseline selection depends largely on:

- User needs
- Host opportunities
- Budget

HydRON Simulation Testbed – Objectives

Performance Assessment

- HydRON system simulation and performance assessment
- Support trade-off of different functional control and management protocol models and control plane strategies
- Support trade-off of different key technologies (e.g. link switchover strategies, weather/link forecasting methods, on-board switching & routing strategies)


Technology Demonstration

- Validation of different actual protocol implementations and control plane strategies
- To demonstrate the proof of concept of the hitless-switch technology

Prepare Demonstrator Mission

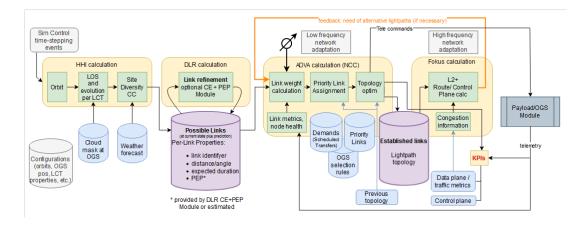
- Simulating the Demonstrator Mission
- Provide test bench for the hitless-switch technology to be integrated into HydRON-DS

Presentation title runs here (go to Header and Footer to edit this text)

HydRON Simulation Testbed – Baseline

The SimTB Discrete Event Simulator

- Simulation of > 500 network nodes, incl. orbital positions of the satellites and OGS positions
- Simulation of atmospheric and weather conditions
- Optical inter-satellite-link/route characteristics
- Performance evaluation of routing protocols for various network scenarios


The SimTB Hardware Testbed

- Emulation of satellite optical network constellations
- Emulation of real optical propagation conditions
- Emulation of real control & management protocol implementations

The Proof-of-Concept Hitless Switching bench

- Testbed to characterize the behavior of the hitless switching unit under realistic conditions
- Standardized interfaces for interoperability at a data-rate of 100Gbps

Presentation title runs here (go to Header and Footer to edit this text)

HydRON Simulation Testbed – Planned schedule

Presentation title runs here (go to Header and Footer to edit this text)

Cat	Group	Task	Jan 23	Feb 23	Mrz 23	Apr 23	Mai 23	Jun 23	Jul 23	Aug 23	Sep 23	Okt 23	Nov 23	Dez 23			
DES	Prototye	DES															
	Environmental Simulation (ES)	Orbit															
		Weather															
		CEM															
	Control Centre	Low Frequency Control															
		High Frequency Control															
	Network Simulation	Network Model SAT															
		Networkmodel OGS															
		Routing Protocol Implementation															
		Measurement															
		ES Integration														Procure	ment
		CC Integration														Develo	pment
		Configuration													Unit Test		st
	DES Computer	HW + SW Procurement														System	Test
HW	Prototye	HW															
	Network Simulation	Network Model SAT															
		Networkmodel OGS															
		Routing Protocol Implementation															
		Measurement															
		ES Integration															
		CC Integration															
		Configuration															
	HW Computer	HW + SW Procurement															
POC	FPGA	FPGA Development															
		FPGA Test															
		SystemTest (FPGA+CEM)															
		Comissioning PoC Testbed															
	CEM	CEM HW Procurement															
		CEM HW Developement/Test															

HydRON Team & Points of Contact

Study Manager: Jörn Streppel (joern.streppel@airbus.com)

Mission Chief Engineer: Peter Schwaderer (<u>peter.schwaderer@airbus.com</u>)

Sim-TB: Marcel Pfau & Sebastian Eiser (marcel.pfau@airbus.com), (sebastian.eiser@airbus.com)

HydRON Campaign Manager: Klaus Schönherr (klaus.schoenherr@airbus.com)

and many more ...

HydRON-DS In Evolving Context

Defend/extend/exploit European Space Lasercom leadership and system competencies

From relay to hi-capacity network

More European sovereignty

Symbiotic evolution with other game-changers (IRIS², ..)

New competitive products

Adapt HydRON-DS contribution to:

Lasercom payloads evolution

Multi-orbit communication networks' development, delivery & operation

6th Annual ScyLight Conference / Workshop

IRIS² (HP's, gen1, gen2)

Bandwidth 100Gbps per Lambda

3D networks ground/Air/Leo/Geo

Highly available optical feeder links

Network management

Routing Protocols

COTS components

the sooner the better

Co-Invest desirable

Combine innovative techno w. SoA

Demonst Seamless connectivity to terrestrial fibre

... to boost and support European Ambition on time

Backup

6th Annual ScyLight Conference / Workshop

HydRON-DS: Towards a seamlessly interoperable

overlay network

- ✓ Focus on Technology and Operational **Capability Demonstrations**
- ✓ Leapfrog current Connectivity Solutions towards more European Sovereignity
- ✓ HydRON Demonstration System as Technology Catalyst towards new **Business Models and Partnerships**
- ✓ Join a new Era of Interoperability between Space & Terrestrial Players

6th Annual ScyLight Conference / Workshop

Share with us your expectations and needs for jointly shaping the next generation of end-to-end connectivity solutions

