Optical satellite downlinks at DLR - OSIRIS

Christian Fuchs German Aerospace Center (DLR) Institute of Communications and Navigation

Knowledge for Tomorrow

OSIRISv1 on Flying Laptop

- Launch: 14th of July, 2017
- Open loop body pointing
- 100 Mbps, 1550 nm, 1.2 kg

Flying Laptop, University of Stuttgart

OSIRISv2 on BIROS

- Launched 22nd of June, 2016
- Closed loop body pointing (with aid of beacon laser)
- 1 Gbps, 1550 nm, 1.64 kg

BIROS, DLR Berlin

BIROS launch, 22/06/2016, 3:56 UTC

3rd OSIRIS generation (currently in development)

- Dedicated Coarse Pointing Assembly (CPA) for satellite-independent operation
- Addition of On-Board Storage and computer system
- System Performance: 10 Gbps, < 5 kg, ~50 W (Future: Extension to N*10 Gbps)
- Design lifetime: 5 years
- Launch: End of 2018 / beginning 2019
- Reference implementation for upcoming CCSDS-standard

OSIRIS4CubeSat

- Highly compact system design (~0,3U)
- Data rates up to 100 Mbit/s at 8 W power consumption
- Active beam steering + body pointing
- Basis for scientific and demonstration missions
- System demonstration mission: 2018

Cooperation between DLR and Tesat Spacecom

- Cooperation agreement with Tesat Spacecom signed on 9th of June, 2016
 - Prof. Ehrenfreund, CEO DLR
 - A. Hammer, CEO Tesat
- Goals of cooperation
 - Evaluation of OSIRIS-technology for potential future Tesat-products
 - Collaborative developments in various fields
 - Industrialization of OSIRIS

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Signing ceremony at Institute's Anniversary (9th of June, 2016)

International cooperation

- DLR cooperates extensively with the international scientific community
- Downlinks from KIRARI / JAXA to DLR, 2006 & 2009
- Downlinks from SOTA / NICT to DLR, 2016
- Downlinks from OPALS to DLR, NASA-JPL, 2015/2016
- International OSIRIS campaign planned
- Standardisation at CCSDS
 - DLR-KN heads the "low complexity LEO" group (relevant for optical downlinks)
 - Partners: NASA, ESA, CNES, NICT, DLR

SOTA, NICT / Japan

OPALS, NASA-JPL

Examples of scientific work at DLR (w.r.t. satellite downlinks)

- Channel measurements during various missions
- Development of Adaptics Optics
- Theoretical studies, e.g. on satellite downlink availability
 - ESA project ONUBLA (General Studies Programme)
 - Many interesting findings, e.g. on buffer sizes, network topologies, ...
- Development of optimized and CCSDS-conform coding schemes

FEC optimized for optical transmission channels

- DLR has heritage in development of (FPGA-based) coding systems
- "Laser Ethernet Transceiver" (LET) for data rates from 100 Mbps to 1 Gbps, optimized for aeronautical optical links
- Completely new development of On-Board-Computer ongoing
 - Optimized for satellite downlink channel
 - Coding according to CCSDS
 - Space-qualified, radiation tolerant COTS
 - > 10 Gbps
 - Tbyte-class mass memory

DLR laser ethernet transceiver optimized for aeronautical applications (1 Gbps user rate)

Optical Ground Stations

Optical Ground Station Oberpfaffenhofen

- Optimized for scientific measurements
- 80 cm telescope with coudé room by 2018
- Adaptive Optics by 2019

Transportable Optical Ground Station

- Optimized for data reception
- 60 cm telescope
- Worldwide use with short lead-time

Selected further topic: Optical GEO feeder links → World record: <u>1.72 Terabit-per-second</u> over 10.4 km

Input to ESA scylight roadmap

- Funding for optical communications and associated topics through ESA scylight is well appreciated and an important contributor towards the operational use of optical data links in space applications
- From DLR Space Research and Technology point-of-view, topics with high importance are...
 - Cost-efficient, yet powerful optical downlink systems
 - Optical GEO feeder links
 - Inter-satellite-links for mega-constellations
 - Quantum key distribution
 - Adaptive Optics suitable for strong turbulence conditions

Thank you very much for your attention!

DLR

Transportable Optical Ground Station (TOGS) during OPALS experiment

Contact

Christian Fuchs

Institute of Communications and Navigation German Aerospace Center (DLR) Münchener Str. 20 82234 Wessling, Germany

Phone: +49 8153 28 1547 Cellphone: +49 173 674 3386 E-Mail: <u>christian.fuchs@dlr.de</u>

