

Specification

Draft ANTARES Communication Standard Technical Specification

Ref: Iris-AN-CP-SPC-477-ESA-C1

16.04.2012

DOCUMENT APPROVAL FORM

Prepared by	Date
ANTARES Study Team	20.03.2012
ANTARES reference number: ANTAR-B1-CP-TNO-2006-IND	

Approved by	Dissemination level	Date
Technical Officer Oscar Del Rio Herrero Che Mko	Public	16.04.2012
Iris Programme Office Nathalie Ricard		

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 1 of 228

ANTARES

Communication Standard Technical Specification DRAFT VERSION

(DRL N°: D018B)

Written by	Responsibility
Indra Team	Author
Verified by	
J.M.Cebrian	CS Technical Manager
Approved by	
J.M.Cebrian	Project Manager

Approval evidence is kept within the documentation management system.

Customer Approvals	
G.Raimondo	Program Manager

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE: 2 of 228

CHANGE RECORDS

ISSUE	DATE	§ CHANGE RECORDS	AUTHOR
Draft01	20/03/2012	First draft	Indra Team

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE: 3 of 228

TABLE OF CONTENTS

1.	INTF	RODUCTION	18
1.	.1	Scope	18
1.	2	Structure of the document	18
2.	DEF	INITIONS, SYMBOLS, ABBREVIATIONS AND CONVENTIONS	20
2.	.1	Definitions	20
	2.1.1	Communication	20
	2.1.2	Entities	23
	2.1.3	RAMS	23
2.	.2	Symbols	24
2.	.3	Acronym list	26
2.	.4	Specification numbering	31
2.	.5	Verb tense	31
3.	APP	LICABLE AND REFERENCE DOCUMENTS	32
3.	.1	Applicable documents	32
3.	.2	Reference documents	32
4.	CON	IMUNICATION STANDARD OVERVIEW	34
4.	.1	System reference model	34
4.	.2	Interfaces covered by the Communication Standard	36
5.	USE	R, CONTROL AND MANAGEMENT PLANE PROTOCOL STACK OVERVIEW	41
5.	.1	User plane protocol stack overview	41
5.	.2	Control plane protocol stack overview	45
5.	.3	Management plane protocol stack overview	49
6.	USE	R, CONTROL AND MANAGEMENT PLANE EXTERNAL INTERFACES	50
6.	.1	ATN/IPS	50
	6.1.1	General Interface Requirements	50
	6.1	1.1.1 User Plane	50

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDate:20/03/2012

ISSUE: Draft01 P

PAGE: 4 of 228

6.	1.1.2	Control Plane	50
6.	1.1.3	Management Plane	51
6.1.2	2 UT A	vionics Interface	51
6.	1.2.1	User Plane	51
6.	1.2.2	Control Plane	51
6.	1.2.3	Management Plane	51
6.1.3	3 UT V	/oice Interface	51
6.	1.3.1	User Plane	51
6.	1.3.2	Control Plane	51
6.	1.3.3	Management Plane	52
6.1.4	GS C	Ground Interface	52
6.	1.4.1	User Plane	52
6.	1.4.2	Control Plane	52
6.	1.4.3	Management Plane	54
6.1.5	5 UT A	irborne Management Interface	54
6.	1.5.1	Management Plane	54
6.1.6	GS A	Airborne Network Layer Interface	55
6.	1.6.1	User Plane	55
6.	1.6.2	Control Plane	56
6.	1.6.3	Management Plane	56
6.1.7	/ Mast	er NMC Management Interface	56
6.	1.7.1	Management Plane	56
6.2	ATN/O	SI	56
6.2.1	Lega	cy Mode	57
6.	2.1.1	Airborne router Upper Adaptation Interface	57
	6.2.1.1.	1 User Plane	57
	6.2.1.1.	2 Control Plane	57
	6.2.1.1.	3 Management Plane	57
6.	2.1.2	Airborne router Lower Adaptation Interface	57
	6.2.1.2.	1 User Plane	57
	6.2.1.2.	2 Control Plane	57
	6.2.1.2.	3 Management Plane	58
6.	2.1.3	UT Avionics Interface	58
	6.2.1.3.	1 User Plane	58
	6.2.1.3.	2 Control Plane	58
	6.2.1.3.	3 Management Plane	59
6.	2.1.4	GS Ground Interface	59

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012

ISSUE: Draft01

PAGE: 5 of 228

6.2.1.4.1	User Plane	59
6.2.1.4.2	Control Plane	59
6.2.1.4.3	Management Plane	59
6.2.1.5 U	IT Airborne Management Interface	59
6.2.1.5.1	Management Plane	60
6.2.1.6	S Airborne Network Layer Interface	60
6.2.1.6.1	User Plane	60
6.2.1.6.2	Control Plane	60
6.2.1.6.3	Management Plane	61
6.2.1.7 Ir	nter-system Management Interface	61
6.2.2 Legacy	y Conversion Mode	61
6.2.2.1 A	irborne router Upper Adaptation Interface	61
6.2.2.2 A	irborne router Lower Adaptation Interface	61
6.2.2.3 U	IT Avionics Interface	61
6.2.2.3.1	User Plane	61
6.2.2.3.2	Control Plane	61
6.2.2.3.3	Management Plane	61
6.2.2.4	SS Ground Interface	62
6.2.2.5 U	IT Airborne Management Interface	62
6.2.2.6	S Airborne Network Layer Interface	62
6.2.2.7 Ir	nter-system Management Interface	62
6.2.3 Iris Mo	de	62
6.2.3.1 A	irborne router Upper Adaptation Interface	62
6.2.3.1.1	User Plane	62
6.2.3.1.2	Control Plane	62
6.2.3.1.3	Management Plane	62
6.2.3.2 A	irborne router Lower Adaptation Interface	62
6.2.3.2.1	User Plane	62
6.2.3.2.2	Control Plane	62
6.2.3.2.3	Management Plane	63
6.2.3.3 U	IT Avionics Interface	63
6.2.3.3.1	User Plane	63
6.2.3.3.2	Control Plane	64
6.2.3.3.3	Management Plane	65
6.2.3.4	S Ground Interface	65
6.2.3.5 U	IT Airborne Management Interface	65
6.2.3.6	S Airborne Network Layer Interface	65

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE: 6 of 228

	6.2.3.7	Inter-system Management Interface	65
7.	GENERA	L REQUIREMENTS	
7.1	l Frequ	ency band, multiple access and system carriers definition	66
	7.1.1 For	ward link	66
	7.1.1.1	Mobile link frequency band specifications	66
	7.1.1.2	Forward link multiple access	66
	7.1.1.3	Forward link system carriers definition and burst types	67
	7.1.2 Re	urn link	68
	7.1.2.1	Mobile link frequency band specifications	68
	7.1.2.2	Return link multiple access	68
	7.1.2.3	Return link system carriers definition and burst types	68
7.2	2 Logic	al and physical channels	69
	7.2.1 Dei	inition of logical channels	69
	7.2.2 De	inition of physical channels	70
	7.2.3 Ma	pping between logical and physical channels	71
	7.2.4 Lin	k layer process sequencing	72
7.3	B Bit or	der	73
	7.3.1 Bit	numbering	73
	7.3.2 Tra	nsmission order	73
8.	USER PL	ANE SPECIFICATION	74
8. 1	User	plane description	74
8.2	2 Addre	essing scheme	74
	8.2.1 Uni	cast addressing	74
	8.2.2 Mu	Iticast addressing	74
8.3	B Secu	ity	75
8.4	1 Netwo	ork layer adaptation functions	75
	8.4.1 AT	N/IPS	75
	8.4.1.1	Mapping between link layer and network layer addresses	75
	8.4.1.2	QoS	75
	8.4.1.3	Compression	76
	8.4.1.	3.1 Header compression	76
	8.4.1.	3.2 Data compression	77
	8.4.2 AT	N/OSI	77

 Reference:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

ISSUE: Draft01

PAGE: 7 of 228

	8.4.2.3	Compression	77
	8.4.2.3	1 Header compression	77
	8.4.2.3	2 Data compression	78
8.5	User p	lane forward link specification	78
8.	.5.1 Link	layer specification	78
	8.5.1.1	ARQ protocol	78
	8.5.1.1	1 ARQ header format	78
	8.5.1.1	2 ARQ procedure	78
	8.5.1.2	Encapsulation	81
	8.5.1.3	Security	83
8.	.5.2 Phys	sical layer specification	84
	8.5.2.1	Burst types	84
	8.5.2.2	Burst waveform generation	84
	8.5.2.3	Physical Layer Adaption	87
	8.5.2.3	1 Interface with Layer 2	87
	8.5.2.3	2 Padding insertion	88
	8.5.2.3	.3 FWD_DD (FWD Data Descriptor) insertion	88
	8.5.2.4	Error Detection (CRC-32 encoder)	90
	8.5.2.5	Base-Band scrambling	92
	8.5.2.6	FEC Encoding	93
	8.5.2.6	1 Inner encoding (LDPC)	94
	8.5.2.6	2 Bit interleaving (for 8-PSK and 16-APSK only)	96
	8.5.2.7	Bit mapping into constellation	97
	8.5.2.7	1 Bit mapping into QPSK constellation	99
	8.5.2.7	2 Bit mapping into 8-PSK constellation	99
	8.5.2.7	.3 Bit mapping into 16-APSK constellation	100
	8.5.2.8	Symbol interleaving	101
	8.5.2.9	Physical Layer Framing	103
	8.5.2.9	1 PLHEADER generation and insertion	104
	8.5.2.9	2 PB (Pilot Blocks) insertion	105
	8.5.2.9	3 PREAMBLE insertion	106
	8.5.2.9	4 POSTAMBLE insertion	107
	8.5.2.10	Base-band pulse shaping and quadrature modulation	107
8.6	User p	lane return link specification	108
8.	.6.1 Link	layer specification	108

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012

ISSUE: Draft01

PAGE: 8 of 228

8.6.1.1	Random access	108
8.6.1.2	ARQ protocol	110
8.6.1.2	2.1 ARQ header and ACK format	110
8.6.1.2	2.2 ARQ procedure	110
8.6.1.3	Encapsulation	111
8.6.1.4	Security	113
8.6.2 Phy	vsical layer specification	114
8.6.2.1	Burst types	114
8.6.2.2	Burst waveform generation	114
8.6.2.3	Physical Layer Adaption	117
8.6.2.3	3.1 Interface with Layer 2	117
8.6.2.3	3.2 Padding insertion	118
8.6.2.3	3.3 RTN_DD (RTN Data Descriptor) insertion	118
8.6.2.4	Error detection (CRC-32)	120
8.6.2.5	Base-band scrambling	121
8.6.2.6	FEC encoding	121
8.6.2.6	6.1 Inner encoding (TCC)	122
8.6.2.6	6.2 Bit interleaving	125
8.6.2.7	Auxiliary channel generation	126
8.6.2.8	Bit mapping into constellation	127
8.6.2.9	Spreading	128
8.6.2.9	0.1 Channelization	129
8.6.2.9	0.2 Complex Scrambling	131
8.6.2.10	Physical layer framing	132
8.6.2.11	Base-band pulse shaping and quadrature modulation	133
8.6.3 Spli	itting traffic policies	134
9. CONTRO	L PLANE SPECIFICATION	
9.1 Contro	ol plane description	135
9.2 Contro	ol procedures	
9.2.1 Teri	minal registration procedure (log-on)	
9.2.1.1	Terminal logon-on procedure	
9.2.1.2	Terminal log-off procedure	
9.2.2 Har	ndover procedures	
9.2.2.1	Handover sequence	
9.2.2.1	I.1 Handover detection	
9.2.2.1	I.2 Handover decision	

9	.2.2.1.3	Handover execution	139
9.2.	2.2 F	landover procedure specification	139
9	.2.2.2.1	Procedure "Satellite Change. Same LAN"	139
9	.2.2.2.2	Procedure "Satellite Change. Different LAN"	140
9	.2.2.2.3	Procedure "SSP Change"	141
9	.2.2.2.4	Procedure "Beam Change. Same GES"	142
9	.2.2.2.5	Procedure "Beam Change. Same LAN"	143
9	.2.2.2.6	Procedure "Beam Change. Different LAN"	144
9	.2.2.2.7	Procedure "GES Change. Same LAN"	144
9	.2.2.2.8	Procedure "GES Change. Different LAN"	145
9	.2.2.2.9	Procedure "Bulk Handover"	145
9.2.3	Multica	ast control procedures	
9.2.	3.1 (Overview of multicast membership management methods	145
9.2.	3.2 N	Aulticast membership management procedures	146
9.2.	3.3 N	Aulticast forwarding procedures	146
9.2.4	Netwo	rk synchronisation procedures	147
9.2.	4.1 (Seneral synchronisation aspects	147
9.2.	4.2 F	orward Link synchronisation	148
9.2.	4.3 F	Return Link synchronisation	151
9	.2.4.3.1	UT Forward link carrier reception	151
9	.2.4.3.2	UT network registration procedure	
9	.2.4.3.3	Steady state procedures (after UT registration)	
9.2.5	ACM p	procedures	
9.2.	5.1 F	orward link general requirements	
9.2.	5.2 F	ast ACM mechanism	
9.2.	5.3 5	Slow ACM mechanism	
9.2.6	Radio	resource management procedures	
9.2.	6.1 (Congestion control	
9	.2.6.1.1	Return Link congestion control protocol for data channel	
9	.2.6.1.2	Return Link contention resolution protocol for signalling channel	
9.2.7	Redur	dancy and failure detection procedures	
9.2.8	Securi	ty control procedures	
9.2.9	Netwo	rk interface procedures	
9.2.	9.1 A	\TN/OSI	
9	.2.9.1.1	Legacy Mode	
9	.2.9.1.2	Iris Mode	
9	.2.9.1.3	Legacy Conversion Mode	

 Reference:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

ISSUE: Draft01

PAGE: 10 of 228

9.3	S Sec	urity	164
9.4	l Cor	trol plane forward link specification	164
	9.4.1 L	ink layer specification	164
	9.4.1.1	ARQ protocol	164
	9.4.1.2	Encapsulation	164
	9.4.1.3	Security	165
	9.4.2 P	hysical layer specification	165
9.5	5 Con	trol plane return link specification	165
	9.5.1 L	ink layer specification	165
	9.5.1.1	ARQ protocol	165
	9.5.1.2	Encapsulation	165
	9.5.1.3	Security	165
	9.5.2 P	hysical layer specification	165
			(00
10.	MAN		
10	.1 Mar	agement plane description	166
10	.2 Mar	agement procedures	166
	10.2.1	General management procedures	166
	10.2.2	Monitoring and configuration	166
	10.2.3	Security aspects	168
11.	PHYS	SICAL LAYER COUNTERMEASURES	
11	.1 Cha	nnel impairment countermeasures	
	11.1.1	Forward link channel impairments countermeasures	
	11.1.1.	1 Diversity	
	11.1.2	Return link channel impairments countermeasures	169
	11.1.2.	1 Diversity	169
	_		
12.	SIGN	ALLING STRUCTURES	
12	.1 Sys	tem information tables	171
12	.2 Han	dover	171
	12.2.1	HO Recommendation	171
	12.2.2	New NCC information	171
	12.2.3	HO Command	172
	12.2.4	Connection close	172

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

ISSUE: Draft01

PAGE: 11 of 228

12.	2.5	ACK Connection close	172
12.	2.6	HO finished	172
12.3	Mu	lticast	172
12.	3.1	Multicast join	172
12.3	3.2	Multicast join ACK	173
12.3	3.3	Multicast leave	173
12.	3.4	Multicast change state report	173
12.4	Log	gon	173
12.4	4.1	Logon request	173
12.4	4.2	Logon confirmation	174
12.5	RR	М	174
12.6	Rar	ndom Access	174
12.0	6.1	RACH Congestion control	
12 7	Voi	ce Control	174
12.7	71	chr on	
12.	72	cbr off	174
12.	7.3	cbr reg	
12.	7.4	cbr rel	
12.	7.5	req cbr	175
12.	7.6	rel cbr	175
12.	7.7	ack	175
12.8	Net	work synchronisation	175
12.	8.1	SYNC correction	175
12.	8.2	NCR field	175
12.9	AC	М	175
13	ΛΝΝΙ		176
10. 7			
13.1	Aer	onautical channel scenarios	176
13.2	For	ward Link FEC Error Performance	178
13.3	Ret	urn Link FEC Error Performance	183
14. ACCUN	ANN MUL/	EX B: LDPC ENCODING PROCEDURE AND ADDRESSES OF PAR	ITY BIT 185
14.1	LDI	PC encoding procedure	185

REFERENCE:	ANTAR-B1	-CP-TNO-2006-IND
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 12 of 228

14.2	A	ddresses of parity bit accumulator for IRA LDPC			
14	.2.1	MODCOD1 parity bit accumulator (r=1/3 and $k_{ldpc} = 2048$)			
14	.2.2	MODCOD2 parity bit accumulator (r=1/2 and k_{ldpc} = 3072)	187		
14	.2.3	MODCOD3 parity bit accumulator (r=2/3 and k_{ldpc} = 4096)	187		
14	.2.4	MODCOD4 parity bit accumulator (r=1/2 and $k_{ldpc} = 4608$)	188		
14	14.2.5 MODCOD5 parity bit accumulator (r=2/3 and $k_{ldpc} = 6144$)				
14	.2.6	MODCOD6 parity bit accumulator (r=2/3 and k_{ldpc} = 8192)	189		
14	.2.7	Additional parity bit accumulator (r=1/2 and $k_{ldpc} = 4096$)			
15.		NEX C: FORWARD LINK BIT INTERLEAVING MATRIX			
16.	ANN	NEX D: TURBO CODE INTERNAL INTERLEAVER ALGORITHM			
17.	ANN	NEX E: RETURN LINK BIT INTERLEAVING MATRIX			
18.		NEX F: INDIVIDUAL HO PROCEDURE SEQUENCE DIAGRAMS			
18.1	Sa	atellite change, same LAN	195		
18.2	Sa	atellite change, different LAN	199		
18.3	18.3 SSP change 203				
	10.5 SSF Unallye				
18.4	18.4 Beam change, same entity207				
18.5	Be	eam change, same LAN	212		
18.6	18.6 Beam change, different LAN216				
18.7	18.7 GES change, same LAN220				
18.8	G	ES change, different LAN	222		
19.	ANN	NEX G: GROUND TO GROUND SIGNALLING SPECIFICATION			
20.		NEX H: ACM MECHANISM IMPLEMENTATION GUIDELINES			
20.1	Fa	ast ACM mechanism	225		
20.2	SI	ow ACM mechanism	225		

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:13 of 228

INDEX OF FIGURES

FIGURE 2-1: INTRODUCING LAYER MODEL TERMINOLOGY	22
FIGURE 4-1: SYSTEM REFERENCE MODEL	34
FIGURE 4-2: IDENTIFICATION OF INTERFACES SPECIFIED BY THE CS	38
FIGURE 5-1: COMMUNICATION STANDARD USER PLANE PROTOCOL STACK (END-TO-EN ATN/IPS	ID) – 41
FIGURE 5-2: COMMUNICATION STANDARD USER PLANE PROTOCOL STACK (END-TO-EN ATN/OSI (LEGACY MODE)	ID) – 42
FIGURE 5-3: COMMUNICATION STANDARD USER PLANE PROTOCOL STACK (END-TO-EN ATN/OSI (IRIS MODE)	ID) – 43
FIGURE 5-4: COMMUNICATION STANDARD USER PLANE PROTOCOL STACK (END-TO-EN ATN/OSI (LEGACY CONVERSION MODE)	ID) – 44
FIGURE 5-5: COMMUNICATION STANDARD CONTROL PLANE PROTOCOL STACK – ATN/IPS.	45
FIGURE 5-6: COMMUNICATION STANDARD CONTROL PLANE PROTOCOL STACK – ATM (LEGACY MODE)	√OSI 46
FIGURE 5-7: COMMUNICATION STANDARD CONTROL PLANE PROTOCOL STACK – ATM (IRIS MODE)	√OSI 47
FIGURE 5-8: COMMUNICATION STANDARD CONTROL PLANE PROTOCOL STACK – ATM (LEGACY CONVERSION MODE)	√OSI 48
FIGURE 5-9: COMMUNICATION STANDARD MANAGEMENT PLANE PROTOCOL STACK	49
FIGURE 7-1: MAPPING BETWEEN LOGICAL AND PHYSICAL CHANNELS	72
FIGURE 8-1: SDL DIAGRAM FOR ARQ PROTOCOL SPECIFICATION	80
FIGURE 8-2: FORWARD LINK BURST WAVEFORM GENERATION	85
FIGURE 8-3: FCH BURST FRAME STRUCTURE	86
FIGURE 8-4: DATA FORMAT AT THE OUTPUT OF THE PHYSICAL LAYER ADAPTION MODULE	87
FIGURE 8-5: FWD_DD HEADER FIELDS	89
FIGURE 8-6: DATA FORMAT AT THE OUTPUT OF THE FWD ERROR DETECTION MODULE	90
FIGURE 8-7: CRC_32 COMPUTATION	92
FIGURE 8-8: OUTPUT STREAM OF THE FEC ENCODING BEFORE THE BIT INTERLEAVING	93
FIGURE 8-9: FORMAT OF DATA AFTER FEC ENCODER (LDPC)	94
FIGURE 8-10: BIT INTERLEAVING SCHEME (TX SIDE)	97
FIGURE 8-11: DATA FORMAT AT THE OUTPUT OF THE BIT MAPPING MODULE	98
FIGURE 8-12: BIT MAPPING INTO QPSK MODULATION	99
FIGURE 8-13: BIT MAPPING INTO 8-PSK MODULATION	100
FIGURE 8-14: BIT MAPPING INTO 16-APSK MODULATION	101
FIGURE 8-15: DATA FORMAT AT THE OUTPUT OF THE SYMBOL INTERLEAVING MODULE	102
FIGURE 8-16: SYMBOL INTERLEAVING SCHEME	103

FIGURE 8-17: DATA FORMAT AT THE OUTPUT OF THE PHYSICAL LAYER FRAMING MODULE . 104
FIGURE 8-18: CONSTRUCTION AND INSERTION OF FWD_BD HEADER104
FIGURE 8-19: FORWARD LINK MODULATION
FIGURE 8-20: RETURN LINK BURST WAVEFORM GENERATION
FIGURE 8-21: RTN LINK BURST FRAME STRUCTURE116
FIGURE 8-22: DATA FORMAT AT THE OUTPUT OF THE RTN PHYSICAL LAYER ADAPTION MODULE
FIGURE 8-23: FWD_DD HEADER FIELDS119
FIGURE 8-24: DATA FORMAT AT THE OUTPUT OF THE RTN ERROR DETECTION MODULE 120
FIGURE 8-25: OUTPUT STREAM OF THE FEC ENCODING122
FIGURE 8-26: PCCC 16-STATES BINARY ARCHITECTURE
FIGURE 8-27: BIT INTERLEAVING SCHEME
FIGURE 8-28: DATA FORMAT AT THE OUTPUT OF THE BIT MAPPING MODULE
FIGURE 8-29: SPREADING OPERATION
FIGURE 8-30: CODE-TREE FOR GENERATION OF ORTHOGONAL VARIABLE SPREADING FACTOR (OVSF) CODES
FIGURE 8-31: RETURN LINK MODULATION
FIGURE 9-1: RETURN LINK SYNCHRONISATION PROCEDURE (FLC RECEPTION AND UT NETWORK REGISTRATION)
FIGURE 9-2: RETURN LINK SYNCHRONISATION PROCEDURE (STEADY STATE)
FIGURE 9-3: AIRCRAFT RECEIVED SIGNAL VARIATION DUE TO ANTENNA LOBE POINTING RESULTING FROM BANKING MANOEUVRES
FIGURE 13-1: PER VS. EB/N0 FOR SCENARIO 1
FIGURE 13-2: PER VS. EB/N0 FOR SCENARIO 2A
FIGURE 13-3: PER VS. EB/N0 FOR SCENARIO 2B
FIGURE 13-4: PER VS. EB/N0 FOR SCENARIO 4
FIGURE 13-5: PER VS. EB/N0 FOR SCENARIO 6A
FIGURE 13-6: PER VS. EB/N0 FOR SCENARIO 6B
FIGURE 13-7: PER VS. ES/N0 FOR SCENARIO 7
FIGURE 13-8: PER VS. EB/N0 FOR SCENARIO 9 (ROTARY-WING)
FIGURE 13-9: PER CURVES IN AERONAUTICAL CHANNEL FOR CONFIGURATION RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂ WITH IDEAL CHANNEL ESTIMATION AND WITH CHANNEL ESTIMATION
FIGURE 13-10: PER CURVES IN AERONAUTICAL CHANNEL BBFRAME = 4096 BITS WITH IDEAL CHANNEL ESTIMATION AND WITH CHANNEL ESTIMATION
FIGURE 16-1: TURBO INTERLEAVER OUTPUT ADDRESS CALCULATION ALGORITHM192
FIGURE 18-1: SATELLITE CHANGE WITH PREVIOUS & NEW GES CONNECTED TO THE SAME LAN

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE: 15 of 228

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:16 of 228

INDEX OF TABLES

TABLE 2-1: SYMBOLS	26
TABLE 3-1: APPLICABLE DOCUMENTS	
TABLE 3-2: REFERENCE DOCUMENTS	
TABLE 6-1: UT MONITORED PARAMETERS	55
TABLE 6-2: UT CONFIGURABLE PARAMETERS	55
TABLE 6-3: EXTERNAL SYSTEM PARAMETERS	56
TABLE 6-4: EXTRA ATN/OSI UT CONFIGURABLE PARAMETERS	60
TABLE 7-1: LOGICAL CHANNELS	69
TABLE 7-2: PHYSICAL CHANNELS	70
TABLE 8-1: AIR-GROUND ADDRESSED COS CATEGORIES	76
TABLE 8-2: ARQ HEADER FIELDS ENCAPSULATION FIELDS	78
TABLE 8-3: FORWARD LINK ENCAPSULATION FIELDS	83
TABLE 8-4: MAXIMUM PSDU SIZE (BYTES)	
TABLE 8-5: FWD_DD HEADER FIELDS	
TABLE 8-6: FWD CONTENTS FIELD MAPPING	
TABLE 8-7: RTN LINK PROTOCOL TYPE FIELD MAPPING	90
TABLE 8-8: BBFRAME BLOCK SIZE	94
TABLE 8-9: LDPC PUNCTURING PATTERNS	95
TABLE 8-10: BIT INTERLEAVER PARAMETERS	96
TABLE 8-11: BIT MAPPING PARAMETERS	
TABLE 8-12: OPTIMUM CONSTELLATION RADIUS RATIO FOR 16-APSK	101
TABLE 8-13: SYMBOL INTERLEAVER PARAMETERS	
TABLE 8-14: FEASIBLE FORWARD LINK MODCODS FOR TRAFFIC BURST	
TABLE 8-15: NUMBER OF FRAGMENTS (N _{FWD_FRAG}) PER FWD_I_XFRAME	
TABLE 8-16: ARQ HEADER FIELDS	110
TABLE 8-17: RETURN LINK ENCAPSULATION FIELDS	113
TABLE 8-18: ALLOWED RACH BURST CONFIGURATIONS	116
TABLE 8-19: MAXIMUM PSDU SIZE	118
TABLE 8-20: RTN_DD HEADER FIELDS	119
TABLE 8-21: CONTENTS FIELD MAPPING	119
TABLE 8-22: RTN LINK PROTOCOL TYPE FIELD MAPPING	120
TABLE 8-23: RACH TCC CODING PARAMETERS	124
TABLE 8-24: RACH BURST BIT INTERLEAVER PARAMETERS	125

TABLE 8-25: NUMBER OF PILOT SYMBOLS (NRTN_PS) OF THE AUXILIARY CHANNEL FOR ALLOWED RTN BURST CONFIGURATIONS
TABLE 8-26: BPSK BIT MAPPING
TABLE 8-27: CHANNELIZATION CODE ALLOCATION FOR C _{CH,D} 131
TABLE 8-28: CHANNELIZATION CODE ALLOCATION FOR C _{CH,C} 131
TABLE 8-29: SCRAMBLING CODE ALLOCATION 132
TABLE 8-30: SCRAMBLING CODE LENGTH
TABLE 8-31: RACH PREAMBLE LENGTH (IN SYMBOLS)
TABLE 8-32: MAPPING BETWEEN SERVICES AND RACH BURSTS CONFIGURATION
TABLE 9-1: CONGESTION CONTROL SIGNALLING MESSAGE (CC_CONFIG MSG)
TABLE 10-1: GS MONITORED PARAMETERS
TABLE 10-2: GS CONFIGURABLE PARAMETERS
TABLE 13-1: AERONAUTICAL PROPAGATION SCENARIOS
TABLE 13-2: FWD LINK FEC PARAMETERS
TABLE 13-3: RACH TCC CODING CONFIGURATIONS 183
TABLE 13-4: RTN LINK PER SIMULATION PARAMETERS
TABLE 14-1: Q/C VALUES
TABLE 14-2: MODCOD1 PARITY BIT ACCUMULATOR ADDRESSES (R=1/3 AND KLDPC = 2048).187
TABLE 14-3: MODCOD3 PARITY BIT ACCUMULATOR (R=2/3 AND KLDPC = 4096)188
TABLE 14-4: MODCOD5 PARITY BIT ACCUMULATOR (R=2/3 AND KLDPC = 6144)
TABLE 14-5: MODCOD6 PARITY BIT ACCUMULATOR (R=2/3 AND KLDPC = 8192) 190
TABLE 14-6: ADDITIONAL PARITY BIT ACCUMULATOR (R=1/2 AND KLDPC = 4096) 190
TABLE 16-1: TURBO INTERLEAVER LOOKUP TABLE DEFINITION 193
TABLE 20-1: RECOMMENDED NREDUCED DECODER ITERATIONS AND PER THRESHOLD AT NREDUCED DECODER ITERATIONS FOR THE FWD LINK MODCODS

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 18 of 228

1. INTRODUCTION

This document, named Communication Standard Technical Specification, has been issued in the scope of WP2 of the ANTARES project and integrates the work performed by the ANTARES WP2 partners.

The main objective of the ANTARES project is the definition of a new Air Traffic Services (ATS) and Airline Operational Control (AOC) satellite Communications Standard and an associated system implementation that allows seamless operation with terrestrial standards.

The new satellite-based Communication Standard, covered by this document, specifies the physical and link layers of the protocol stack, including the mechanisms for signalling between physical entities using the Communication Standard. The Communication Standard specification addresses the user, control and management planes of the standardised interfaces.

NOTE

The current version of this document is a **DRAFT version** that reflects work done so far within the ANTARES project. However, as a consequence of future CS consolidation and refinement activities, relevant revisions and updates can be expected, especially in the following areas:

- System architecture
- Network layer functions
- Control layer functions, as logon, handover, ACM.
- Multiple Access
- Management functions
- Signalling functions
- Multicast control procedures

In this sense, a notice **To be revised in B2** has been added throughout the document to those sections or requirements where major updates are likely during ANTARES B2 phase.

1.1 Scope

The present document reports the Communication Standard Technical Specification for the provision of ATS and AOC services through satellite-based communications. The present Technical Specification specifies the physical and link layer for the user, control and management planes.

1.2 Structure of the document

This document is structured as follows:

- Section 1 presents the introduction to the document
- Section 2 compiles the definition, symbols, acronyms and conventions used in the document

- Section 3 reports the applicable and reference documents
- Section 4 reports the satellite communication system overview, identifying the entities involved in the communication.
- Section 5 provides an overview of the user, control and management planes
- Section 6 provides the technical specifications for user, control and management plane external interfaces
- Section 7 addresses the technical specification for the frequency band, multiple access and system carriers definition, channels and other general requirements
- Section 8 reports the technical specification for the user plane
- Section 9 reports the technical specification for the control plane
- Section 10 provides the technical specification for the management plane
- Section 11 identifies the technical specifications for the physical layer countermeasures against propagation channel impairments and RF interferences, applicable to user and control planes
- Section 12 provides the descriptions of the signalling structures

In addition to these sections, the communication standard technical specification also contains the following annexes:

- Annex A provides the reference performances of PER figures
- Annex B provides the parity bit accumulators for IRA LDPC codes and the LDPC encoding procedure
- Annex C provides the forward link bit interleaving matrix (empty annex)
- Annex D provides the internal turbo code interleaving algorithm
- Annex E provides the return link bit interleaving matrix (empty annex)
- Annex F provide the HO procedures
- Annex G provides the G2G signalling specification.
- Annex H presents ACM mechanism implementation guidelines.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:20 of 228

2. DEFINITIONS, SYMBOLS, ABBREVIATIONS AND CONVENTIONS

2.1 Definitions

2.1.1 Communication

- **Communication protocol:** A set of rules defining how network entities interact with each other, including both syntactic and semantic definitions.
- Communication links:
 - Mobile link (or ATM link): communication link between satellite and aircraft (uplink and downlink)
 - **Fixed link:** communication link between satellite and Ground Earth Station (uplink and downlink)
 - **Forward link:** communication link from the Ground Earth Station to aircraft, where:
 - **Uplink** is the communication link from ground to the satellite
 - **Downlink** is the communication link from satellite to aircraft
 - **Return link**: communication link from aircraft to Ground Earth Station where:
 - Uplink is the communication link from aircraft to the satellite
 - **Downlink** is the communication link from satellite to ground
- Protocol stack: a specific instance of a layered protocol that defines the communication protocol. The present communication standard supports several protocols in parallel, each one using its own terminology. The ISO-OSI reference protocol stack terminology is used for describing these protocols. In the following the description of the layers tailored for the present communication standard is provided:
 - **Physical layer (L1)**: The physical layer defines the Satellite Communication System waveform, including modulation and coding.
 - Link layer (L2): The link layer defines the media access method (often referred to as MAC – Media Access Control) as well as framing, formatting and error control (often referred to as LLC – Link Layer Control).
 - Network layer (L3): The network layer defines the format of end-to-end data packets, as well as routing of packets within the network. The following network layer protocols are supported: CNLP (ATN/OSI), ISO 8208 packets (ATN/OSI) and IP (ATN/IPS).
 - Transport layer (L4): The transport layer defines end-to-end functionalities such as reliable/unreliable data transport, flow and congestion control. The transport layer operates end-to-end, and is implemented only in the end systems. Therefore, it has no direct impact on the Satellite Communication system. However, the mechanisms of transport layer have to be carried, in form of overhead on network layer packets and additional packets.

The following transport protocols are current or anticipated within the EATM environment:

• TP4 (ATN-OSI reliable transport protocol)

REFERENCE:	ANTAR-B1	-CP-TNO-2006-IND
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 21 of 228

- TCP (ATN-IPS reliable transport protocol)
- UDP (ATN-IPS unreliable transport protocol)

TP4 and TCP generate significant numbers of transport layer acknowledgements.

- **Session layer (L5)**: Not applicable for this standard. Defined by SESARJU.
- **Presentation layer (L6)**: Not applicable for this standard. Defined by SESARJU.
- **Application layer (L7)**: The application layer defines additional mechanisms used by end user applications. It handles user data units in the form of application messages.

Additionally, definition of an additional layer located between layer 3 and layer 2 is useful:

- Network adaptation layer (L2.5): this layer has been specifically defined for the CS and provides functions that are needed to properly adapt the network layer to the generic (i.e., network layer agnostic) CS link and control layer functions. While they require interpretation / knowledge of the specific network layer of the data unit to be transmitted (interpretation of headers, etc.), they do not cover traditional network layer functions as described for layer 3. It includes functions as MAC address resolution, IP header compression and support for mobility related events (as required for ATN/OSI).
- The following definitions are also applicable to the present document (see also Figure 2-1):
 - NSDU (Network Service data Unit) or Segment: A NSDU is the data unit posted by the transport layer to L3. It is also named Segment.
 - NPDU (Network Protocol Data Unit) or Packet: A NPDU is the data unit resulting from adding network layer headers to the NSDU provided by L4. It is the basic data unit handled by the network layer and exchanged among L3 peers. It is also the data unit forwarded to the network adaptation layer.
 - ALSAP (Adaptation Layer Access point): The ALSAP is the point where L2.5 provides its services to L3.
 - PNPDU (Processed Network Protocol Data Unit): A PNPDU is the resulting data unit after the incoming NPDU data unit is processed by the L2.5 layer of the CS (in particular, by applying header compression protocols). In some cases (for ATN/OSI or when ATN/IPS header compression is disabled), it is equivalent to a NPDU. From a L2 point of view, it is equivalent to a LSDU.
 - LSAP (Link Service Access Point): The LSAP is the point where L2 provides the service to L2.5.
 - LSDU (Link Service Data Unit) or Processed Packet: A LSDU is the data unit posted by the network adaptation layer (L2.5) to L2 at the LSAP.
 - LPDU (Link Protocol Data Unit): A LPDU is the data unit forwarded to L1. Its payload contains fragments of one or several LSDUs. From a L1 point of view, it is equivalent to a PSDU.
 - PSAP (Physical Service Access Point): The PSAP is point where L1 provides the service to L2.

- PSDU (Physical Service Data Unit): A PSDU is the data unit posted by L2 to L1 at the PSAP. It is also referred to as frame throughout the document.
- PPDU (Physical Protocol Data Unit): A PPDU is a PSDU data unit which includes also L1 signalling headers (data descriptor), a CRC and, eventually, padding (in case the PSDU size is smaller than the PPDU payload). One PPDU always contains at most one PSDU.
- PLFRAME (Physical layer frame) or Burst: This is the data unit resulting from physical layer processes (coding, modulation, etc) as applied to one PPDU. It is also referred to as burst throughout the document.

Note: These terms have been adapted from the OSI layered model terminology.

Figure 2-1: Introducing layer model terminology¹

¹ Depicted headers are for illustration only. They refer to headers and trailers and may not be always located at the start of the data unit as shown in the figure. Please refer to the specific data format definitions included in the CS specification for the exact description of the data units.

- **Pt-to-pt** (point to point): A point to point channel is transmitted by one source and received by one destination.
- **Pt-to-mp** (point to multipoint): A point to multipoint channel is transmitted by one source and received by several receivers.
- **Mp-to-pt** (multipoint to point): A multipoint to point channel is transmitted by several source and received by one receiver.
- Unicast: the one-to-one transmission of data packets to one specified destination.
- **Multicast**: the one-to-many transmission of data packets to interested destinations.
- **Broadcast**: the one-to-all transmission of data packets to all possible destinations.
- Physical layer link quality:
 - **PER (Packet Error Rate):** In the Communication Standard, the term PER refers to the probability that a PPDU is received with errors. Therefore, the PER is computed as the number of erroneous PPDUs divided by the total number of received PPDUs.

2.1.2 Entities

- **Ground Earth Station (GES):** The network entity that provides the feeder link to the Space Segment. In the context of this document, a GES is defined as a logical entity that makes use of communication resources assigned to it in order to communicate with aircraft associated with it. A GES will typically user resources within a single beam of a single satellite, but this is not mandatory. A physical site may accommodate several logical GESs, and GESs may share Earth station infrastructure.
- Network Control Centre (NCC): The network entity that performs the control of the system resources and elements. It is expected that this entity covers neither the Satellite Control Centre nor the Satellite Operation Centre, but it includes the CSMa (Communication Spectrum Monitoring agent).
- Network Management Centre (NMC): The network entity that performs the management of the system resources and elements. It is expected that this entity covers neither the Satellite Control Centre nor the Satellite Operation Centre.
- User Terminal (also called Airborne Earth Station AES): The avionics onboard the aircraft that implements the communication protocol and provides the interface to other on-board elements via an on-board network.

2.1.3 RAMS

- **Continuity**: Probability that a transaction will be completed having met specified performance. Possible anomalous behaviours include late transactions, lost messages or transactions that cannot be recovered within the expiration time, duplicate messages and uncorrected detected message errors.
- Instantaneous availability: It is the probability that a service (or system) will be operational (up and running) at any random time, t. This is very similar to the reliability function in that it gives a probability that a system will function at the given time, t. Unlike reliability, the instantaneous availability measure incorporates maintainability information.

- Average Uptime Availability (or Mean Availability): The mean availability is the proportion
 of time during a mission or time period that the system (or service) is available for use. It
 represents the mean value of the instantaneous availability function over the period (0, T].
- **Integrity:** Integrity is the acceptable rate of transactions that are completed with an undetected error. Undetected errors include undetected corruption of one or more messages within the transaction.
- **Expiration Time:** Maximum time between updates beyond which a service interruption is declared.
- **TD95:** 95-th percentile of the transit delay one-way latency.
- **Diversity**: The simultaneous use of two or more mutually independent and different systems to increase service availability. Diversity allows to improve the link availability and thus the overall system availability by providing (at least) two links thanks to redundant elements and allowing to switch from one link to the other one (or combine the two) by choosing the best configuration/link available at a certain time. This solution is mainly used as fade countermeasure technique and compensation of the channel, i.e. for events happening outside of the system. The overall availability for the two links (or paths) is better than the one for a single link (or path).
- **Redundancy**: Duplication of one element (of GES, NCC, satellite or UT) or equipment within an element (e.g. RF sub-system) or sub-equipment (e.g. modem) to provide back-up in case of failure. Typical cases to be considered are intended unavailability of equipment due to maintenance operations as well as failures due to design or lifetime of equipment. The objective is to compensate for unavailability of elements due to the system itself.

Symbol	Definition			
f_N	Nyquist frequency			
1	In-phase component			
K _{idpc}	Uncoded LDPC block Size / Number of bits of FWD_BB_FRAME			
N _{ldpc}	Coded LDPC block Size / Number of bits of FWD_FECFRAME			
N _{FWD_DD}	Number of bytes of FWD_DD (FWD Data Descriptor) header			
N _{FWD_PSDU}	Number of bytes of the incoming FWD_PSDU			
N _{FWD_BB_DFL}	Number of bytes of FWD_BB_DATAFIELD			
N _{FWD_CRC}	Number of bits FWD_CRC_32 field			
N _{FWD_PPDU}	Number of bits of FWD_PPDU			
N _{FWD_S_PPDU}	Number of bits of Scrambled PPDU			
N _{FWD_XFECFRAME}	Number of symbols (complex values) per FWD_XFECFRAME			
N _{FWD_I_XFRAME}	Number of symbols per FWD_I_XFRAME			
N _{FWD_PR}	Number of FWD Preamble symbols			
N _{FWD_PO}	Number of FWD Postamble symbols			
N _{FWD_H}	Number of symbols of PLHEADER			
N _{FWD_S}	Number of pilot symbols in a Pilot Block (PB)			

2.2 Symbols

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:25 of 228

Symbol	Definition	
N _{PB}	Number of Pilot Blocks per FWD_PLFRAME	
N _{FWD_FRAG}	Number of Fragments per FWD:PLFRAME	
h ₀ , h ₁ ,, h ₁₅	FWD_DD Header bits	
i ₀ , i ₁ ,, i _{Kldpc-1}	LDPC code information bits	
p ₀ , p ₁ ,, p _{Nldpc-Kldpc-1}	LDPC code parity bits	
S ₀ , S ₁ ,S ₂	MODCOD_ID bits	
N _{FWD}	Number of rows of FWD Bit Interleaver	
M _{FWD}	Number of columns of FWD Bit Interleaver	
D _{FWD}	Number of rows of FWD Symbol Interleaver	
P _{FWD}	Number of columns of FWD Symbol Interleaver	
Q	Quadrature component	
R	Code rate	
R ₁	First (inner) ring Radius of APSK modulation	
R ₂	Second ring Radius of APSK modulation	
T _s	Symbol period	
α	Roll-off factor	
γ Constellation radius ratio		
η _{MOD}	Number of transmitted bits per constellation symbol	
N _{RTN_DD} Number of bytes of RTN_DD (RTN Data Descriptor) head		
N _{RTN_PSDU} Number of bytes of the incoming RTN_PSDU		
N _{RTN_BB_DFL} Number of bytes of RTN_BB_DATAFIELD		
N _{RTN_CRC} Number of bits FWD_CRC_32 field		
N _{RTN_BBFRAME}	Number of bits of RTN_BBFRAME	
N _{RTN_S_BBFRAME}	Number of bits of Scrambled BBFRAME / Uncoded TCC block size	
N _{RTN_FECFRAME}	Number of bits of FECFRAME / Coded TCC block size (including tail bits)	
N _{RTN_PS}	Number of Pilot bits transmitted through the Auxiliary channel	
N _{RTN_DCH} Number of symbols of Data Channel (BPSK mapped)		
N _{RTN_ACH}	Number of symbols of Auciliary Channel (BPSK mapped)	
C _{ch,d}	Channelization code of Data Channel (RTN_DCH)	
C _{ch,c}	Channelization code of Auxiliary Channel (RTN_ACH)	
C _{ch,SF,k}	Channelization code identifier	
C _{Scram}	Complex Scrambling code	
β ₂	Auxiliary Channel Gain Factor	
N _{RTN}	Number of rows of FWD Bit Interleaver	
M _{RTN}	Number of columns of FWD Bit Interleaver	
G(D)	Transfer function of the 16-state constituent code for PCCC	
n ₀ (D)	First Forward Recursive Systematic Convolutional Generator polynomial	
n ₁ (D)	Second Forward Recursive Systematic Convolutional Generator polynomial	
n ₂ (D)	Third Forward Recursive Systematic Convolutional Generator polynomial	
d(D)	Backward Recursive Systematic Convolutional Generator	

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:26 of 228

Symbol	Definition
	polynomial
x(0), x(1),, x(N _{RTN_S_BBFRAME} -1)	TCC (PCCC) code information bits
y ₁ (0), y ₁ (1),, y ₁ (N _{RTN_S_BBFRAME} -1)	TCC (PCCC) parity bits of the first encoder (without tail bits)
$y'_{1}(0) y'_{2}(1) y'_{2}(0) = 1$	TCC (PCCC) parity bits of the second encoder (without tail
$y_1(O), y_1(I),, y_1(INRTN_S_BBFRAME^I)$	bits)
l ₀ , l ₁ ,, l ₁₅	RTN_DD Header bits

Table 2-1: Symbols

2.3 Acronym list

Acronym	Definition
16-APSK	16 Amplitude Phase Shift Keying
3GPP	3rd Generation Partnership Project
3GPP2	3rd Generation Partnership Project 2
8-PSK	8 Phase Shift Keying
A-CDMA	Asynchronous Code Division Multiple Access
ACK	Acknowledgement
ACM	Adaptive Coding and Modulation
ACQCH	Acquisition Channel
AD	Applicable Document
AES	Aeronautical Earth Station / Advanced Encryption Standard
AF	Assured Forwarding / Address Format
AFDX	Avionics Full-Duplex Switched Ethernet
AMS(R)S	Aeronautical Mobile Satellite (en Route) Service
AOC	Airline Operational Control
APSK	Amplitude and Phase-Shift Keying
A-R	Airborne Router
ARQ	Automatic Repeat reQuest
ARS	Administrative Region Selector
AS	Autonomous System
ATM	Air Traffic Management, Asynchronous Transfer Mode
ATN	Aeronautical Telecommunication Network
ATN/IPS	ATN/ Internet Protocol Suite
ATN/OSI	ATN/ Open Systems Interconnection
ATS	Air Traffic Services
AWGN	Additive White Gaussian Noise
BB	Base Band
BCCH	Broadcast Control Channel

ındra

REFERENCE: ANTAR-B1-CP-TNO-2006-IND 20/03/2012 DATE: **ISSUE:**

Draft01

PAGE: 27 of 228

Acronym	Definition
BE	Back-End
BER	Bit Error Rate
BGP	Border Gateway Protocol
BPSK	Binary Phase Shift Keying
BTCH	Broadcast/Multicast Traffic Channel
CBR	Constant Bit Rate
CC	Congestion Control
CCSDS	Consultative Committee for Space Data Systems
CDMA	Code Division Multiple Access
CLNP	Connectionless Network Protocol
COCR	Communications Operation Concept and Requirements
CoS	Class of Service
CRC	Cyclic Redundancy Checksum
CS	Communication Standard
CSMa	Communications Spectrum Monitoring agents
DA	Data Aided
DAMA	Demand Assigned Multiple Access
DD	Decision Directed
DDF	Design Definition File
DJF	Design Justification File
DiffServ	Differentiated Services
DSCP	DiffServ Code Point
DS-SS	Direct Sequence Spread Spectrum
UTCH	Unicast Traffic Channel
EATMN	European Air Traffic Management Network
EATMS	European Air Traffic Management System
ECAC	European Civil Aviation Conference
EIRP	Equivalent Isotropic Radiated Power
ESP	Encapsulating Security Payload
E-SSA	Enhanced Spread Spectrum ALOHA
ET	Expiration Time
FC	Fragment Counter
FCAPS	Fault, Configuration, Accounting, Performance and Security
FCH	Forward Channel
FCI	Future Communications Infrastructure
FUCCH	Forward Unicast Control Channel
FEC	Forward Error Correction
FID	Flow ID
FIFO	First In First Out

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012

ISSUE: Draft01

PAGE: 28 of 228

Acronym	Definition		
FL	Forward Link		
FLC	Forward Link Carrier		
FRS	Future Radio System		
FSS	Fixed Satellite Service		
FW	Forward		
FWD	Forward		
G/G-R	Ground-Ground Router		
GEO	Geostationary Orbit		
GES	Ground Earth Station		
GMP	Group Management Protocol		
GS	Ground Segment		
GSE	Generic Stream Encapsulation		
GW	Gateway		
HA	Home Agent		
НО	Handover		
HoA	Home Address		
HPA	High-Power Amplifier		
IBO	Input Back-Off		
ICAO	International Civil Aviation Organization		
ID	Identifier		
IDRP	Inter-Domain Routing Protocol		
IF	Interface		
IFR	Instrument Flying Rules		
IGMP	Internet Group Management Protocol		
IP	Internet Protocol		
IPS	Internet Protocol Suite		
IRA	Irregular Repeat and Accumulate		
ISH	Intermediate System Hello		
ITU	International Telecommunication Union		
L1	Layer 1 – Physical layer		
L2	Layer 2 – Link Layer		
L3	Layer 3 – Network Layer		
L4	Layer 4 – Transport Layer		
LAN	Local Area Network		
LDP	Link Data Protocol		
LDPC	Low Density Parity Check		
LDPU	Link Protocol Data Unit		
LGA	Low-Gain Antenna		
LHCP	Left Hand Circular Polarisation		

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01

PAGE: 29 of 228

Acronym	Definition
LIR	Local Internet Registry
LREF	Local Reference
LPDU	Link Protocol Data Unit
LSDU	Link Service Data Unit
MA	Multiple Access
MAC	Medium Access Control
MCDU	Multi-Function Control and Display Unit
MEO	Medium Earth Orbit
MF-TDMA	Multi Frequency Time Division Multiple Access
MIB	Management Information Base
MN	Mobile Node
MODCOD	MODulation and CODification
MSB	Most Significant Bit
MSP	Mobile Service Provider
MTU	Maximum Transmission Unit
NACH	Network Access Channel
NACK	Negative Acknowledgement
NCC	Network Control Centre
NCR	Network Clock Reference
NMC	Network Management Centre
NMS	Network Management System
NSAP	Network Service Access Point
NTW	Network
OBO	Output Back-Off
OBP	On-board Processor
OSI	Open Systems Interconnection
OVSF	Orthogonal Variable Spreading Factor
PC	Packet Counter
PCCC	Parallel Concatenated Convolutional Code
PDU	Protocol Data Unit
PER	Packet Error Rate
PHB	Per-Hop-Behaviour
PIAC	Peak Instantaneous Aircraft Count
PID	Packet ID
PKI	Public Key Infrastructure
PL	Physical Layer
PPDU	Physical Protocol Data Unit
PRACH	Physical Random Access CHannel
PSAP	Physical Service Access Point

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01

PAGE: 30 of 228

Acronym	Definition
PSDU	Physical Service Data Unit
PSK	Phase-Shift Keying
PT	Payload Type
QoS	Quality of Service
QPSK	Quadrature Phase Shift Keying
RA	Random Access
RACCH	Random Access Control Channel
RACH	Random Access Channel
RAMS	Reliability, Availability, Maintainability and Safety
RD	Reference Document
RUCCH	Return Unicast Control Channel
RF	Radio Frequency
RFU	Reserved for Future Use
RHCP	Right-Hand Circular Polarisation
RIR	Regional Internet Registry
RL	Return Link
RLC	Return Link Carrier
ROHC	RObust Header Compression
RRAC	Return Random Access Carrier
RRM	Radio Resource Management
RSC	Recursive Systematic Convolutional
RTC	Return Link Carrier
RT	Return
RTN	Return
RTP	Real-Time Transport Protocol
RTT	Round-Trip Time
SACK	Selective Acknowledgement
SCC	Satellite Control Centre
SCCH	Synchronisation Control Channel
SDU	Service Data Unit
SF	Spreading Factor
SNDCF	Sub-Network Dependent Convergence Functions
SNDU	Sub-Network Data Unit
SNIR	Signal to Noise plus Interference Ratio
SNMP	Simple Network Management Protocol
SNR	Signal to Noise Ratio
SOC	Satellite Operation Centre
SPS	Space Segment
SRD	System Requirements Document

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:31 of 228

Acronym Definition SREJ Selective Reject SRRC Square Root Raised Cosine SSA Spread Spectrum Aloha SSP Satellite Service Provider S-WAN Satellite Wide Area Network TBC To Be Confirmed TBD To Be Defined TCC Turbo Convolutional Code TCP **Transmission Control Protocol** TD95 Transit Delay 95-th percentile TDMA **Time Division Multiple Access** TS Transport Stream / Timeslot T-WAN **Terrestrial Wide Area Network** ТΧ Transmission UDP User Datagram Protocol ULPC **Up-Link Power Control** UT User Terminal UW Unique Word Wide Area Network WAN

2.4 Specification numbering

The communication standard specifications are identified by a unique alphanumeric code with the following format:

CSREQ-NNNN

where:

- CSREQ is common for all the specifications
- NNNN stands for the specification number

2.5 Verb tense

In the present document, the following definitions apply:

- "Shall": the specifications formulated as "shall" are mandatory specifications and must be implemented.
- "May": The requirements formulated as "may" express a permissible practise or action.
- "Will": The requirements formulated as "will" denotes a provision or an intention in connection with this requirement.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE: 32 of 228

3. APPLICABLE AND REFERENCE DOCUMENTS

3.1 Applicable documents

ID	Document Number	Title	Issue	Date
[AD-01]	Iris-B-OS-RSD- 0002-ESA	Iris Phase 2.1 System Requirements Document	1.4	06/09/2010

Table 3-1: Applicable documents

3.2 Reference documents

ID	Document Number	Title	Issue	Date
[RD-01]	RFC 2578	Structure of Management Information Version 2 (SMIv2)		04/1999
[RD-02]	RFC 3418	Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)		12/2002
[RD-03]	RFC 2863	The Interfaces Group MIB		06/2000
[RD-04]	RFC 3877	Alarm Management Information Base (MIB)		09/2004
[RD-05]	Doc 9896- AN/469	Manual for the ATN using IPS Standards and Protocols 1 st edition		
[RD-06]	RFC 1981	Path MTU Discovery for IP version 6		08/1996
[RD-07]	RFC 4291	IP Version 6 Addressing Architecture		02/2006
[RD-08]	RFC 4271	A Border Gateway Protocol 4 (BGP-4)		01/2006
[RD-09]	RFC 2858	Multiprotocol Extensions for BGP-4		06/2000
[RD-10]	RFC 4443	Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification		03/2006
[RD-11]	RFC 2475	An architecture for Differentiated Services		12/1998
[RD-12]	RFC 2597	Assured Forwarding PHB Group		06/1999
[RD-13]	RFC 5795	The RObust Header Compression (ROHC) Framework		03/2010
[RD-14]	RFC 4995	RObust Header Compression (ROHC) : A profile for TCP/IP (ROHC-TCP)		07/2007
[RD-15]	RFC 3095	RObust Header Compression (ROHC): Framework and four profiles : RTP, UDP, ESP, and uncompressed		07/2001
[RD-16]	RFC 3843	RObust Header Compression (ROHC): A Compression Profile for IP		06/2004
[RD-17]	ITU-R P.618-9	Propagation data and prediction methods required for the design of Earth-space telecommunication systems		08/2007

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01 PA

PAGE: 33 of 228

ID	Document Number	Title	Issue	Date
[RD-18]	RFC 3411	An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks		10/2002
[RD-19]	RFC4862	IPv6 Stateless Address Autoconfiguration		9/2007
[RD-20]	ICAO Doc 9705/AN956	ATN Standards and Recommended Practices (SARPs). Manual of Technical Provisions for the ATN.	3.0	
[RD-21]		ITU Radio Regulations, Edition 2008		2008

Table 3-2: Reference documents

4. COMMUNICATION STANDARD OVERVIEW

4.1 System reference model

The following figure illustrates the system reference model.

Figure 4-1: System reference model

This figure identifies the physical system components of the satellite communication network as well as the interfaces with the ATM network and the end users (ATC and AOC). The system reference architecture represents the most general system scenario where different Satellite Service Providers (SSPs) participate in the ATM service provision. In this general system configuration each SSP accesses the satellite communication resources by means of multiple stations providing the Tx/Rx communication capabilities. Depending on the particular operational requirements coming from the service providers, a simplified ground segment topology could be envisaged which is characterised by only one SSP accessing the satellite link via a single station. This scenario may be considered as sub-case of the most general one described above.

The satellite communication system reference architecture used for the development of the communication standard is composed of the three following segments:

• The Space Segment (SPS). The SPS is composed of several satellites carrying dedicated ATM payloads operating in the AMS(R)S frequency band (portion of L-band

spectrum reserved for aeronautical safety services) in the mobile link, whilst C, Ku or Ka frequency band is mainly used for the fixed link, being Ku band the most likely one.

The on-board ATM payloads are transparent, which means that they are not equipped with On-Board Processing (OBP) capabilities. In the mobile link, the SPS is a multi-beam system, while for the fixed link, a single beam is considered as reference architecture. For the system reference architecture, hot redundant GEO satellites are considered which may be either co-located in the same orbital position or orbitally separated.

- The Ground Segment (GS). The GS is mainly composed of three types of network entities:
 - Network Control Centre (NCC): the NCC is the network entity responsible for controlling the satellite network. In the system reference architecture, one backup NCC located at a different site for satellite link availability purposes for each active NCC is foreseen.
 - Ground Earth Station (GES): The GES is the network entity that provides the feeder link to the Space segment. The GES makes use of the communication resources assigned to it in order to communicate with the aircraft associated with it, providing voice and data traffic services. The GES also provides an interface with the terrestrial ATM networks.
 - Network Management Centre (NMC): the NMC is the network entity in charge of managing the overall satellite communication network (system resources, system elements, etc) in a centralised way. Management functions performed by the NMC are considered to be not critical since the system is designed for surviving to a failure of the management sub-system during a limited time.

Two possible alternatives applies to control functions in terms of location within Ground Segment elements:

- Alternative1: control functions that can be Centralized in the NCC.
- Alternative 2: control functions that can be distributed and collocated with GES.

In both alternatives the GES is in charge of supporting the transmitting/receiving functionality. In the system reference architecture, multiple GESs are envisaged to adapt the satellite communication system to an operation concept where different administrative and political entities (communication service providers, etc) want to own and operate their facilities with a certain degree of autonomy. In the system reference architecture it is considered that any GES has connectivity to any mobile beam; that is, a GES can manage UTs located in any mobile beam.

In case of multiple Satellite Service Providers (SSPs) envisaged in the most general system architecture configuration, there can be an additional entity, the **Master NMC**, in charge of allocating resources among the different SSP in a rather static way.

• **The User Segment**. The User Segment is composed of the mobile User Terminals (UTs) (or Aeronautical Earth Stations (AES)), which are the avionics equipment in charge of implementing the communication protocol and providing interface to the other on-board

elements via the on-board network. The dimensioning and design of the UT is carried out taking into account several constraints impacting on the final achievable performance. In this respect, constraints on installation (e.g. possible configurations and location of the UT antenna, no need for external active cooling), on regulation, on cost etc. are considered which influence the final UT performance (e.g. HPA power, antenna radiation pattern etc.).

Although not considered for CS aspects, the GS will include the **SCC/SOC** stations in charge of controlling and monitoring the satellites. Communication Spectrum Monitoring agents (CSMa) are in charge of monitoring the forward link (all forward carriers, if needed) and uploading the status of the satellite to the SOC/SCC in order to minimize the processing of satellite events an quickly manage GS switchovers. It shall be deployed in every spot beam.

The GS Elements (NMC, NCC and GES) are interconnected through a Wide Area Network (WAN) supporting the Ground-to-Ground signalling communications, as depicted in the figure. Two different WAN typologies are considered in the system reference architecture:

- **Terrestrial-WAN (T-WAN)**: T-WAN is a terrestrial network used to transport the signalling among the GS Elements.
- Satellite-WAN (S-WAN): S-WAN, also called Feeder-to-Feeder link, is based on interconnecting the GS Elements through satellite links operating in the FSS (Fixed Satellite Service). The S-WAN is used to support the signalling information exchange between the GS Elements.

The WANs are intended to transport control and management signalling among distant GS elements. The management signalling is expected to be carried over the Terrestrial WAN (T-WAN), as the NMS is not expected to be equipped with a satellite station.

For the control signalling exchanged among GS elements, several solutions are identified:

- i. No control signalling is exchanged between GS elements and specific mechanism based on AES GS extra signalling is envisaged.
- ii. A highly available WAN (T-WAN + S-WAN) is deployed to connect the GS elements that rely on such WAN for critical information.
- iii. A T-WAN or a S-WAN without any special availability requirements is deployed. Then the GS – AES protocol implements extra signalling as in the first solution.

The selection of the most appropriate solution from the above ones is a decision left to the SSP, as it depends on its operational strategy and constraints.

4.2 Interfaces covered by the Communication Standard

In the following figure, the basic architecture of an ANTARES system implementation is shown, including interfacing external elements. Internal elements (or a specific layer of an element, in the case of the airborne router Adaptation Layer) which would be part of an ANTARES system implementation are represented in orange, whereas elements (and layers of elements) outside

this implementation are represented in blue². The numbered circles represent the interfaces to be specified (partially or fully) by the CS.

This CS does not define a particular communication between potential GS elements like NCC and GES as this is a system-specific implementation aspect. Like some management functions which are not proposed for standardisation in the CS but in other standards, the Antares European System GS specification could also follow the same approach.

The CS also avoids over-specifying the GS entity responsible for interacting with the UT whenever this could be performed in different elements in different system implementations. In the case of the Antares European System implementation, this is covered in GS documentation (including GS DJF, GS functional allocation, GS DDF, etc.). Nevertheless, it may be necessary to specify in the CS certain performance requirements related to the GS that would indirectly imply requirements on the G2G link (if this link exists in a particular system implementation). (See section 19 Annex G: Ground to Ground signalling specification).

² The Voice GW may be part of an ANTARES system implementation if CS functionality has to be finally supported by this element (revision pending after MAC decision).

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01 PAGE

PAGE: 38 of 228

Figure 4-2: Identification of interfaces specified by the CS

Two types of interfaces are envisaged:

• <u>Physical interfaces</u>: Interfaces 1 – 6 of the previous figure. These interfaces are represented with solid-lined circles. This implies that the interface is implemented over a direct physical or software interface between the elements/layers.

The list of physical interfaces is included hereafter:

- (1) **Airborne router Upper Adaptation Interface**: This interface is present only in the case of aircraft supporting the ATN/OSI protocol stack. Although being an ANTARES external interface, it is an airborne router internal interface between the airborne router Adaptation Layer (which belongs to the ANTARES system implementation) and the airborne router Upper Layers (L3 layers and above).
- (2) **Airborne router Lower Adaptation Interface**: Like the airborne router Upper Adaptation Interface, this interface is present only in the case of aircraft supporting the ATN/OSI protocol. It is an ANTARES external interface but a airborne router internal interface, in this case between the airborne router Adaptation Layer and the airborne router L1/L2 Layers.
- (3) **UT Avionics Interface**: This is a physical ANTARES external interface between the UT and the airborne local network. It connects, in principle, with the airborne router.
- (4) **UT Voice Interface**: It is a physical ANTARES external interface between the Voice Back-End (Voice BE) and the UT.
- (5) **UT Satellite Interface**: This is a physical ANTARES internal interface, as it is located between two ANTARES system elements: the UT and the Satellite, which in turn provides connectivity towards the GS.
- (6) **GS Ground Interface**: The GS Ground Interface is a physical ANTARES external interface which represents the interface between the ANTARES GS and the terrestrial ATM network. Via this interface, the ANTARES system will be able to communicate to ground end users (e.g. ATC and AOC centres, etc) and Voice GWs.
- <u>Logical interfaces</u>: Interfaces 7 9 of the previous figure. These interfaces are represented as dashed-lined circles. This represents that the interface is implemented as a logical connection/relationship between the elements/layers, although possibly not adjacent or with a direct/physically implemented interface one to each other.

The list of logical interfaces is presented hereafter:

- (7) **UT Airborne Management Interface**: This is a logical ANTARES external interface between the UT and the MCDU. It is an airborne management interface, providing to the airborne user some management functionalities via its MCDU.
- (8) **GS Airborne Network Layer Interface**: It is a logical ANTARES external interface between the airborne router Network Layer and the GS, for network layer protocols related procedures such as next hop address determination.
- (9) **Master NMC Management Interface**: It is a logical ANTARES internal interface between the Master NMC and different ANTARES GS implementations, which is

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

 Issue:
 Draft01
 Page: 40 of 228

in charge of distributing some management information such as general system information or general resource configuration.

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01

PAGE: 41 of 228

5. USER, CONTROL AND MANAGEMENT PLANE PROTOCOL STACK OVERVIEW

The following sections present the user, control and management plane protocol stacks.

5.1 User plane protocol stack overview

The following diagram shows the user plane protocol stack for the ATN/IPS case.

Figure 5-1: Communication standard user plane protocol stack (end-to-end) – ATN/IPS

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01 PAGE: 42 of 228

The following diagram shows the user plane protocol stack for the ATN/OSI case in the Legacy mode implementation.

Figure 5-2: Communication standard user plane protocol stack (end-to-end) – ATN/OSI (Legacy Mode)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01 PAGE: 43 of 228

The following diagram shows the user plane protocol stack for the ATN/OSI case in the Iris mode implementation.

Figure 5-3: Communication standard user plane protocol stack (end-to-end) – ATN/OSI (Iris Mode)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01 PAGE: 44 of 228

The following diagram shows the user plane protocol stack for the ATN/OSI case in the Legacy conversion mode implementation.

Figure 5-4: Communication standard user plane protocol stack (end-to-end) – ATN/OSI (Legacy Conversion Mode)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

> **ISSUE:** Draft01

PAGE: 45 of 228

5.2 Control plane protocol stack overview

The following diagrams show the control plane protocol stack for ATN/IPS and for the different ATN/OSI modes (up to the network layer).

Figure 5-5: Communication standard control plane protocol stack – ATN/IPS

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 PAGE

PAGE: 46 of 228

Figure 5-6: Communication standard control plane protocol stack – ATN/OSI (Legacy Mode)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 PA

PAGE: 47 of 228

Figure 5-7: Communication standard control plane protocol stack – ATN/OSI (Iris Mode)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 Pac

PAGE: 48 of 228

Figure 5-8: Communication standard control plane protocol stack – ATN/OSI (Legacy Conversion Mode)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 49 of 228

5.3 Management plane protocol stack overview

Indra

The following diagram shows the management plane protocol stack.

Figure 5-9: Communication standard management plane protocol stack

Critical control data could be exchanged also in the indicated Ku <-> Ku link (feeder to feeder link) in Figure 5-9 if the S-WAN option is selected.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE: 50 of 228

6. USER, CONTROL AND MANAGEMENT PLANE EXTERNAL INTERFACES

In section 4.2, the interfaces of the ANTARES system are presented, and the specification of their type, external or internal, is also determined. In this section, the requirements placed by the CS on the external interfaces are defined. Two different protocol stacks are supported by an ANTARES system implementation: ATN/IPS and ATN/OSI.

6.1 ATN/IPS

In this section, the external interfaces requirements for the ATN/IPS architecture will be defined. It has to be noted that, as no airborne router Adaptation Layer is needed for the ATN/IPS architecture described in ATN/IPS protocol stacks in this document, the interfaces "Airborne router Upper Adaptation Interface" and "Airborne router Lower Adaptation Interface" are not envisaged in this section. As some requirements are shared between several interfaces, an initial "General Requirements" section is included, which will be referenced from the subsequent interface specification sections, if needed. For each interface, the requirements will be presented distributed into user, control and management planes.

6.1.1 General Interface Requirements

6.1.1.1 User Plane

CSREQ-0010

The external interfaces to ATN/IPS network shall support the IPv6 network layer protocol as specified in [RD-05] for IPS nodes.

CSREQ-0020

The external interfaces to ATN/IPS network shall implement Maximum Transmission Unit (MTU) path discovery as specified in [RD-06].

CSREQ-0030

The external interfaces to ATN/IPS network shall set/maintain the Flow Label field of the IPv6 header to zero for outgoing packets.

CSREQ-0040

In the external interfaces to ATN/IPS networks, IPv6 addressing architecture using globally scoped IPv6 addresses when communicating, as specified in [RD-05], shall be implemented.

6.1.1.2 Control Plane

CSREQ-0050

ATN/IPS nodes shall implement Internet Control Message Protocol (ICMPv6) as specified in [RD-10].

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE: 51 of 228

6.1.1.3 Management Plane

CSREQ-0060

Care of IPv6 addresses (CoA) shall belong to the address prefix of the ATN/IPS FRS systems the aircraft is connected to. ATN/IPS FRS systems will be implemented as a set of ATN/IPS administrative domains. ATN/IPS administrative domains shall obtain IPv6 address prefix assignments from their Local Internet Registry (LIR) or Regional Internet Registry (RIR).

CSREQ-0065

Management protocol shall be based on SNMPv3 (RFC3410).

6.1.2 UT Avionics Interface

6.1.2.1 User Plane

The user plane requirements for this interface are the ones included in section 6.1.1.1.

The CS does neither specify the physical nor the link layer of the avionics interface, which are left open to allow integration of the UT with aircraft avionics according to manufacturer preferences.

6.1.2.2 Control Plane

The control plane requirements for this interface are the ones included in section 6.1.1.2.

6.1.2.3 Management Plane

The management plane requirements for this interface are the ones included in section 6.1.1.3.

6.1.3 UT Voice Interface

(To be revised in B2)

6.1.3.1 User Plane

The user plane requirements for this interface are the ones included in section 6.1.1.1.

The CS does neither specify the physical nor the link layer of the avionics interface, which are left open to allow integration of the UT with aircraft avionics according to manufacturer preferences.

6.1.3.2 Control Plane

The control plane requirements for this interface are the ones included in section 6.1.1.2. Additionally, the following requirements apply:

CSREQ-0090

The UT shall be able to notify to the Voice BE the opening of a return CBR channel by forwarding a "cbr on" control message.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE: 52 of 228

CSREQ-0100

The UT shall be able to notify to the Voice BE the closure of a return CBR channel by forwarding a "cbr off" control message inside an IP packet.

CSREQ-0110

The Voice BE shall be able to request to the UT the opening of a return CBR channel by forwarding a "cbr req" control message inside an IP packet.

CSREQ-0120

The Voice BE shall be able to request to the UT the closure of a return CBR channel by forwarding a "cbr rel" control message inside an IP packet.

6.1.3.3 Management Plane

The management plane requirements for this interface are the ones included in section 6.1.1.3.

6.1.4 GS Ground Interface

(To be revised in B2, for voice service related aspects)

6.1.4.1 User Plane

The user plane requirements for this interface are the ones included in section 6.1.1.1. Additionally, the following requirement applies:

CSREQ-0130

The GS shall provide a WAN interface towards the Terrestrial ATM Network.

6.1.4.2 Control Plane

The control plane requirements for this interface are the ones included in section 6.1.1.2. Additionally, the following requirements apply:

CSREQ-0140

Inter-domain routing protocol BGP-4 shall be implemented in this interface as defined in [RD-08].

CSREQ-0150

BGP-4 protocol extensions shall be implemented in this interface as defined in [RD-09].

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE: 53 of 228

CSREQ-0160

The GW shall be able to request to the GS the opening of a (forward, return or both) CBR channel towards an aircraft or group of aircraft by forwarding a "req cbr" control message inside an IP packet.

CSREQ-0170

Any CBR channel request from the Voice GW to the GS shall be acknowledged by forwarding an "ack" control message from the GS to the Voice GW inside an IP packet.

CSREQ-0180

The GES shall be able to notify to the Voice GW the opening of a forward CBR channel towards an aircraft or group of aircraft by forwarding a "cbr on" control message inside an IP packet.

CSREQ-0190

The Voice GW shall be able to notify to the GES the reception of a "cbr on" control message by forwarding an "ack" control message inside an IP packet.

CSREQ-0200

The Voice GW shall be able to request to the GS the closure of a (forward or return) CBR channel towards an aircraft or group of aircraft by forwarding a "rel cbr" control message with the identifier of the aircraft or group of aircraft inside an IP packet.

CSREQ-0210

Any CBR channel closure request from the Voice GW to the GS shall be acknowledged by forwarding an "ack" control message from the GS to the Voice GW inside an IP packet.

CSREQ-0220

The GES shall be able to notify to the Voice GW the closure of a forward CBR channel towards an aircraft or group of aircraft by forwarding a "cbr off" control message inside an IP packet.

CSREQ-0230

The Voice GW shall be able to notify to the GES the reception of a "cbr off" control message by forwarding an "ack" control message inside an IP packet.

6.1.4.3 Management Plane

The management plane requirements for this interface are the ones included in section 6.1.1.3. Additionally, the following requirement applies:

CSREQ-0240

ATN/IPS administrative domains shall use AS numbers for ATN/IPS routers implementing interdomain routing.

6.1.5 UT Airborne Management Interface

As the UT Airborne Management Interface is a management interface, this section only envisages the management plane.

6.1.5.1 Management Plane

Refer to section 10.2.1 for general management requirements also applicable to this external interface.

CSREQ-0260

At least the following monitored parameters shall be accessible (read-only) by the MCDU from the User Terminal about its UT Satellite Interface:

Parameter	Description	Туре
Aircraft ICAO address	Allows access to the aircraft 24-bit ICAO address used in CS procedures.	Octet String
L2 addresses	Provides access to the layer 2 address(es) for the User Terminal.	Octet String
L3 addresses	Provides access to the layer 3 address(es) configured on the air interface.	Octet String
Traffic Log	Indicates the location of the traffic log files on the local file system for retrieval.	Octet String
Tx bytes	Provides the number of bytes transmitted on the interface since system startup.	Counter
Rx bytes	Provides the number of bytes received on the interface since system startup.	Counter
Rx Power	Indicates the received signal power level (0.1 dBm units).	Integer
SNIR	Indicates the received Signal-to-(Noise+Interference) Ratio (0.1 dB units).	Integer
BER	Indicates the current Bit Error rate on the air interface (1E-9 units).	Integer
PER	Indicates the current Packet Error rate on the air interface (1E-9 units).	Integer
ModCod evolution	Provides the history of the ModCod used by the user terminal.	Octet String
Status	Indicates the status of the communication link. This is a binary status and can either be "up" (1) or "down" (0).	Octet
Logon Status	Indicates the logon status of the user terminal. This can either be success in case the user terminal logon was successful or error otherwise. In case of error, an error code used to further diagnose the problem will be provided.	Octet String
Current GES Address	Indicates the address of the GES to which the User Terminal is currently assigned and to which data packets are to be addressed.	Octet String

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01

PAGE: 55 of 228

Parameter	Description	Туре
Current Tx carrier information	Provides access to the details on the current carrier(s) that is in use for transmitting traffic.	Octet String
Current Rx carrier information	Provides access to the details on the current carrier(s) that is in use for receiving traffic.	Octet String
Current SNIR	Indicates the currently published SNIR when ACM is in use (0.1 dB units).	Integer
Current ARQ retransmissions	Provides the total number of retransmissions performed by the ARQ mechanisms when it is in use.	Counter
Random Access collision rate	Indicates the current rate of collisions for the random access channel.	Integer
Current Random Access backoff	Provides access to the current transmission back-off parameter (tx_backoff) for the random access mechanism (10 ms units).	Integer
Current Random Access persistency	Provides access to the current persistency parameter for the random access mechanism (1E-2 units).	Integer
Current Random Access timeout	Provides access to the current retransmission timeout parameter for the random access mechanism (10 ms units).	Integer
Current Data Rate	Provides access to the data rate of the carrier(s) the User Terminal is currently using.	Octet String
Fault History	Lists the fault IDs of all the faults that have been recorded since system startup indicating for each fault, the timestamp at which it has occurred.	Octet String
Current Fault Status	Provides access to the current fault status for the User Terminal. Additionally, in presence of a failed state, information regarding the current fault is also provided.	Octet String

Table 6-1: UT monitored parameters

CSREQ-0270

At least the following configurable parameters shall be accessible (read-write) by the MCDU from the User Terminal about its UT Satellite Interface:

Parameter	Description	Туре
Default system information	Provides the information about the system to which the User Terminal should try to logon by default. This includes the details necessary to acquire the initial System Information tables with signalling messages/carrier(s) for the system.	Octet String
ATN/OSI addresses and default routers	Allows access to the ATN/OSI configuration parameters such as addressing and routing information.	Octet String
System Logon credentials	Provides the credentials needed for logging on to the system.	Octet String

Table 6-2: UT configurable parameters

6.1.6 GS Airborne Network Layer Interface

6.1.6.1 User Plane

The user plane requirements for this interface are the ones included in section 6.1.1.1.

6.1.6.2 Control Plane

The control plane requirements for this interface are the ones included in section 6.1.1.2.

CSREQ-0275

The CS shall support the stateless address autoconfiguration method as defined in RFC4862 [RD-19].

6.1.6.3 Management Plane

The management plane requirements for this interface are the ones included in section 6.1.1.3.

6.1.7 Master NMC Management Interface

The Master NMC Management Interface provides the parameters necessary to support handover of UT to another inter-operable system complying with the CS.

As this interface is a management interface, this section only envisages the management plane.

6.1.7.1 Management Plane

CSREQ-0280

In order to allow inter-system handover, at least the following parameters shall be available* for other inter-operable systems complying with the CS:

(*) Manual process by the network operator.

Parameter	Description	Туре
SSP identifier	Identifies the Satellite Service provider.	Octet String
Initial system details	Includes the details necessary to acquire the initial System Information tables with signalling messages/carrier(s) for the system.	Octet String

Table 6-3: External system parameters

6.2 ATN/OSI

In this section, the external interfaces requirements for the ATN/OSI architecture will be defined. It should be noted that as voice services are not provided for ATN/OSI implementations, the interface "UT Voice Interface" is not envisaged in this specification. For each interface, the requirements will be presented distributed into user, control and management planes. Depending on the ATN/OSI mode (Legacy, Legacy Conversion or Iris mode) implemented, the interface requirements change, so the interfaces specification will be divided into three subsections.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE: 57 of 228

6.2.1 Legacy Mode

6.2.1.1 Airborne router Upper Adaptation Interface

6.2.1.1.1 User Plane

CSREQ-0290

v8208 (ISO/IEC 8208 adaptation for VDL2) packet exchange shall be implemented in this interface.

6.2.1.1.2 Control Plane

CSREQ-0300

UT logon shall be notified to the airborne router NTW Layer from the airborne router Adaptation Layer providing the A/G-R addresses.

CSREQ-0310

UT logoff shall be notified to the airborne router NTW Layer from the airborne router Adaptation Layer.

6.2.1.1.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.1.2 Airborne router Lower Adaptation Interface

6.2.1.2.1 User Plane

CSREQ-0320

The airborne router Adaptation Layer shall be able to generate UNITDATA.request messages containing v8208 packets (ISO/IEC 8208 adaptation for VDL2) towards the UT.

6.2.1.2.2 Control Plane

CSREQ-0340

The airborne router Adaptation Layer shall be able to generate PARAM.request messages towards the UT containing:

- Mode of operation (Iris or Legacy)
- Legacy Conversion Enabled flag
- Airborne router Address
- Preferred Service Provider Router Address (TBC)

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:58 of 228

CSREQ-0350

The airborne router Adaptation Layer shall be able to process PARAM.confirm to confirm PARAM.request parameter settings.

CSREQ-0360

The airborne router Adaptation Layer shall be able to process JOIN.indication messages from the UT when a UT logon occurs, containing the A/G-R addresses.

CSREQ-0370

The airborne router Adaptation Layer shall be able to process LEAVE.indication messages.

CSREQ-0380

The airborne router Adaptation Layer shall be able to process UNITDATA.confirm messages from the UT confirming the transmission or discarding of v8208 packets contained in UNITDATA.request messages sent.

6.2.1.2.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.1.3 UT Avionics Interface

6.2.1.3.1 User Plane

CSREQ-0400

The UT shall be able to process UNITDATA.request messages containing v8208 packets from the airborne router.

CSREQ-0410

The UT shall be able to generate UNITDATA.indication messages containing v8208 packets towards the airborne router.

6.2.1.3.2 Control Plane

CSREQ-0420

The UT shall be able to process PARAM.request messages from the airborne router containing:

- Mode of operation (Iris or Legacy)
- Legacy Conversion Enabled flag
- A-R Address

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:59 of 228

• Preferred Service Provider Router Address (TBC)

CSREQ-0430

The UT shall be able to generate PARAM.confirm messages towards the airborne router to confirm PARAM.request parameter settings.

CSREQ-0440

The UT shall generate JOIN.indication messages towards the airborne router when a UT logon occurs containing the A/G-R addresses.

CSREQ-0450

The UT shall generate LEAVE.indication messages towards the airborne router when a UT logoff or a L3 handover occurs.

CSREQ-0460

The UT shall be able to generate UNITDATA.confirm messages towards the airborne router confirming the transmission or discarding of v8208 packets contained in UNITDATA.request messages.

6.2.1.3.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.1.4 GS Ground Interface

6.2.1.4.1 User Plane

CSREQ-0470

The GS shall implement IPv6 encapsulation of CLNP packets by using IP-SNDCF.

6.2.1.4.2 Control Plane

CSREQ-0480

IDRP shall be implemented in this interface. (TBC)

6.2.1.4.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.1.5 UT Airborne Management Interface

As the UT Airborne Management Interface is a management interface, this section only envisages the management plane.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 60 of 228	

6.2.1.5.1 Management Plane

CSREQ-0490

The management plane requirements of this interface are the same as the ones in section 6.1.5.1 without the L2 protocol definition and including the following line in Table 6-2:

Parameter	Description	Туре
ATN/OSI addresses and default routers	Allows access to the ATN/OSI configuration parameters such as addressing and routing information.	Octet String

Table 6-4: Extra ATN/OSI UT configurable parameters

6.2.1.6 GS Airborne Network Layer Interface

6.2.1.6.1 User Plane

CSREQ-0500

Mobile SNDCF shall be implemented in this interface.

CSREQ-0510

CLNP packet routing shall be implemented in this interface.

6.2.1.6.2 Control Plane

CSREQ-0520

The A/G-R and the airborne router shall implement Inter-Domain Routing Protocol (IDRP) functionality.

CSREQ-0530

The A/G-R shall implement Intermediate System Hello (ISH) functionality towards the GES.

CSREQ-0540

The GES shall implement Intermediate System Hello (ISH) functionality towards:

- The airborne router
- The A/G-R

CSREQ-0550

The airborne router shall implement Intermediate System Hello (ISH) functionality towards the GES.

6.2.1.6.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.1.7 Inter-system Management Interface

The requirements for this interface are the same as the ones included in section 6.1.7.

6.2.2 Legacy Conversion Mode

6.2.2.1 Airborne router Upper Adaptation Interface

The requirements of this interface are the same as the ones presented in section 6.2.1.1.

6.2.2.2 Airborne router Lower Adaptation Interface

The requirements of this interface are the same as the ones presented in section 6.2.1.2.

6.2.2.3 UT Avionics Interface

6.2.2.3.1 User Plane

The requirements of this interface are the same as the ones presented in section 6.2.1.3.1. Additionally, the following requirements apply:

CSREQ-0560

Mobile SNDCF shall be implemented in this interface.

CSREQ-0570

The UT shall be able to extract CLNP packets inside Mobile SNDCF.

6.2.2.3.2 Control Plane

The requirements of this interface are the same as the ones presented in section 6.2.1.3.2. Additionally, the following requirements apply:

CSREQ-0580

IDRP shall be implemented in this interface.

CSREQ-0590

Intermediate System Hello (ISH) functionality shall be implemented in this interface.

6.2.2.3.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.2.4 GS Ground Interface

The requirements of this interface are the same as the ones presented in section 6.2.1.4.

6.2.2.5 UT Airborne Management Interface

The requirements of this interface are the same as the ones presented in section 6.2.1.5.

6.2.2.6 GS Airborne Network Layer Interface

In this mode, this interface does not apply, as the UT acts as a proxy between the airborne router and the A/G-R.

6.2.2.7 Inter-system Management Interface

The requirements for this interface are the same as the ones included in section 6.1.7.

6.2.3 Iris Mode

6.2.3.1 Airborne router Upper Adaptation Interface

6.2.3.1.1 User Plane

CSREQ-0600

CLNP packet exchange shall be implemented in this interface.

6.2.3.1.2 Control Plane

No requirements are envisaged for the control plane of this interface.

6.2.3.1.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.3.2 Airborne router Lower Adaptation Interface

6.2.3.2.1 User Plane

CSREQ-0620

The airborne router Adaptation Layer shall be able to generate UNITDATA.request messages containing uncompressed CLNP PDUs towards the UT.

CSREQ-0630

The airborne router Adaptation Layer shall be able to process UNITDATA.indication messages containing uncompressed CLNP PDUs from the UT.

6.2.3.2.2 Control Plane

CSREQ-0640

The airborne router Adaptation Layer shall be able to generate PARAM.request messages towards the UT containing:

- Mode of operation (Iris or Legacy)
- Legacy Conversion Enabled flag
- A-R Address
- Preferred Service Provider Router Address (TBC)
- LREF Compression Supported Flag
- Deflate Compression Supported Flag

CSREQ-0650

The airborne router Adaptation Layer shall be able to process PARAM.confirm from the UT to confirm PARAM.request parameter settings.

CSREQ-0660

The airborne router Adaptation Layer shall be able to process JOIN.indication messages from the UT when a UT logon occurs containing:

- A/G-R addresses.
- LREF Compression Supported Flag
- Deflate Compression Supported Flag
- Network prefixes for which the A/G-R has access

CSREQ-0670

The airborne router Adaptation Layer shall be able to process LEAVE.indication messages from the UT.

CSREQ-0680

The airborne router Adaptation Layer shall be able to process UNITDATA.confirm messages from the UT confirming the transmission or discarding of uncompressed CLNP PDUs contained in UNITDATA.request messages.

6.2.3.2.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.3.3 UT Avionics Interface

6.2.3.3.1 User Plane

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:64 of 228

CSREQ-0700

The UT shall be able to process UNITDATA.request messages containing uncompressed CLNP PDUs from the airborne router.

CSREQ-0710

The UT shall be able to generate UNITDATA.indication messages containing uncompressed CLNP PDUs towards the airborne router.

6.2.3.3.2 Control Plane

CSREQ-0720

The UT shall be able to process PARAM.request messages from the airborne router containing:

- Mode of operation (Iris or Legacy)
- Legacy Conversion Enabled flag
- A-R Address
- Preferred Service Provider Router Address (TBC)
- LREF Compression Supported Flag
- Deflate Compression Supported Flag

CSREQ-0730

The UT shall be able to generate PARAM.confirm from the airborne router to confirm PARAM.request parameter settings.

CSREQ-0740

The UT shall generate JOIN.indication messages towards the airborne router whenever it performs a logon, containing:

- A/G-R addresses
- LREF Compression Supported Flag
- Deflate Compression Supported Flag

CSREQ-0750

The UT shall generate LEAVE.indication messages towards the airborne router whenever it performs a logoff or a L3 handover occurs.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:65 of 228

CSREQ-0760

The UT shall be able to generate UNITDATA.confirm messages towards the airborne router confirming the transmission or discarding of uncompressed CLNP PDUs contained in UNITDATA.request messages.

6.2.3.3.3 Management Plane

No requirements are envisaged for the management plane of this interface.

6.2.3.4 GS Ground Interface

The requirements of this interface are the same as the ones presented in section 6.2.1.4.

6.2.3.5 UT Airborne Management Interface

The requirements of this interface are the same as the ones presented in section 6.2.1.5.

6.2.3.6 GS Airborne Network Layer Interface

As no direct dialogs exist between the airborne router and the A/G-R for the Iris mode, this interface has no requirements.

6.2.3.7 Inter-system Management Interface

The requirements for this interface are the same as the ones included in section 6.1.7.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:66 of 228

7. GENERAL REQUIREMENTS

7.1 Frequency band, multiple access and system carriers definition

7.1.1 Forward link

7.1.1.1 Mobile link frequency band specifications

CSREQ-0770

The System shall operate the mobile link at frequencies identified by ITU for Aeronautical Mobile-Satellite (Route) Service (AMS(R)S), in agreement to in agreement to Article 1, Section III, 1.33 of ITU Radio Regulations [RD-21] and allocated worldwide:

• 1545 to 1555 MHz for the mobile downlink (from satellite to User Terminal)

CSREQ-0790

The mobile link polarisation shall be right hand circular (RHCP) for uplink and downlink (TBC).

7.1.1.2 Forward link multiple access

CSREQ-0800

The forward link access shall be based on a MF-TDMA scheme.

CSREQ-0810

The resource segmentation structure of the forward link shall be defined as follows:

- Time-slot: a time duration in which a burst is allocated. It is specified by duration, carrier frequency and carrier rate or bandwidth.
- Frame: defined as a sequence of time-slots at the same carrier rate.
- Super-frame: defined as a collection of frames at different carrier frequencies.

CSREQ-6000

The Forward Link frame shall be composed by TBD consecutive time slots.

CSREQ-6005

The Forward Link super-frame shall be a portion of time and frequency composed of frames from different carrier frequencies.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:67 of 228

7.1.1.3 Forward link system carriers definition and burst types

CSREQ-0820

The Forward Link shall be supported by one type of carrier: Forward Link Carrier (FLC).

CSREQ-0830

The Forward Link Carrier (FLC) shall provide the frequency and time reference of the system.

CSREQ-0840

The Forward Link Carrier shall be shared by the GS elements (NCC and GES) in MF-TDMA mode.

CSREQ-0850

The Forward Link Carrier shall transmit multiplexed both user traffic and network signalling (broadcast or unicast).

CSREQ-0860

The Forward Link Carrier shall transmit multiplexed the following physical channels or burst types (refer to section 7.2.2 for their definition):

• Forward Channel (FCH)

CSREQ-5780

The Forward Link Carrier shall support the following baud rates:

• 160 kbauds for the Spot beams (TBC)

CSREQ-0870

The guard band of the forward carriers shall be:

- 2 kHz for GEO and MEO constellations
- 5 kHz for HEO constellations

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:68 of 228

7.1.2 Return link

7.1.2.1 Mobile link frequency band specifications

CSREQ-0880

The System shall operate the mobile link at frequencies identified by ITU for Aeronautical Mobile-Satellite (Route) Service (AMS(R)S), in agreement to in agreement to Article 1, Section III, 1.33 of ITU Radio Regulations [RD-21] and allocated worldwide:

• 1646.5 to 1656.5 MHz for the mobile uplink (from User Terminal to satellite).

7.1.2.2 Return link multiple access

CSREQ-0900

The return link access shall be based on an A-CDMA (Asynchronous-CDMA) scheme.

7.1.2.3 Return link system carriers definition and burst types

CSREQ-0930

The Return Link shall be supported by the following type of carriers:

• Return Link Carrier (RLC).

CSREQ-0940

The Return Link Carrier shall be shared by the UTs in Random Access mode to transmit either signalling or user traffic information.

CSREQ-0960

The Return Link Carrier shall transmit the following physical channels or bursts types (refer to section 7.2.2 for their definition):

• Random Access Channel (RACH).

CSREQ-5790

The Return Link Carrier shall support the following chip rates:

• 160 kchips/s (TBC)

CSREQ-0980

The guard band of the return carriers shall be:

- 8 kHz for GEO and MEO constellations
- 11.5 kHz for HEO constellations

The guard band shall account for return link frequency uncertainty:

- Due to UT clock instability and residual Doppler in the first access to the network (Log-on procedure).
- Due to residual errors on the UT Doppler pre-compensation.

7.2 Logical and physical channels

7.2.1 Definition of logical channels

The following logical channels, covered in the requirements that follow, are defined:

	FWD	RTN
Traffic channels		
Broadcast/Multicast Traffic Channel (BTCH)	~	-
Unicast Traffic Channel (UTCH)	✓	✓
Control channels		
Broadcast Control Channel (BCCH)	~	-
Forward Unicast Control Channel (FUCCH)	~	-
Return Unicast Control Channel (RUCCH)	-	\checkmark

Table 7-1: Logical channels

CSREQ-0990

The BTCH shall be a point-to-multipoint logical channel for the transmission of user plane data to all or a sub-group of UTs within one or more beams.

CSREQ-1000

The BTCH shall be supported on the Forward Link only.

CSREQ-1010

The UTCH shall be a point-to-point bi-directional logical channel unicast to the transmission of user plane data (LSDUs) between the GS and a specific UT.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:70 of 228

CSREQ-1020

The UTCH shall be supported on both the Forward Link and the Return Link.

CSREQ-1030

The BCCH shall be a point-to-multipoint logical channel used to forward general system control information that shall be announced to all or a sub-group of UTs within one or morebeams.

CSREQ-1040

The BCCH shall be supported on the Forward Link only.

CSREQ-1050

The FUCCH shall be a point-to-point logical channel used by the GS to exchange control messages with a specific UT.

CSREQ-1060

The FUCCH shall be supported on the Forward Link only.

CSREQ-1070

The RUCCH is a point-to-point or point-to-multipoint logical channel used by the UT to forward control messages to the GS.

CSREQ-1080

The RUCCH shall be supported on the Return Link only.

7.2.2 Definition of physical channels

The following physical channels, covered in the requirements that follow, are defined:

Channel	FWD	RTN
Forward Channel (FCH)	~	-
Random Access Channel (RACH)	-	✓

Table 7-2: Physical channels

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:71 of 228

CSREQ-1110

The FCH shall be used either for transmitting control or data information.

CSREQ-1120

The FCH shall be supported on the Forward Link only.

CSREQ-1190

The RACH shall be a used to transfer either control and/or user traffic information.

CSREQ-1200

The RACH shall be a contention-based physical channel whose transmission is based on a Spread Spectrum Aloha (SSA) approach.

CSREQ-1210

The RACH shall be supported on the Return Link only.

7.2.3 Mapping between logical and physical channels

CSREQ-1280

The mapping between logical channels and physical channels shall be as defined in the following figure:

Figure 7-1: Mapping between logical and physical channels

7.2.4 Link layer process sequencing

CSREQ-1300

The order of link layer transmission processes shall be as follows:

- Queuing / buffering, until the LSDU is scheduled for transmission
- Encapsulation, including associated functions:
 - ARQ header insertion (if applicable)
- MAC procedures associated to random access

CSREQ-1310

The order of link layer reception processes shall be as follows:

- Link layer filtering
- Reception buffering and re-sequencing, associated to ARQ (if applicable)
- Assembly of LSDU

UNCLASSIFIED

7.3 Bit order

The following specifications are applicable to user, control and management plane.

7.3.1 Bit numbering

CSREQ-1320

The interpretation of the bit numbering shall be the following:

- The term "bit 0" refers to the least significant bit of a multi-bit field.
- The most significant bit of a k-bit unsigned field shall be designated as "bit k-1"
- For signed fields, "bit k-1" shall refer to the sign bit and "bit k-2" to the most significant bit

7.3.2 Transmission order

The following rules for the transmission order shall be considered in the implementation of the communication standard.

CSREQ-1330

Unsigned values shall be transmitted starting the most significant bit and ending with the less significant.

CSREQ-1340

Signed values shall be transmitted starting with the sign bit, followed by the most significant bit and ending with the least significant bit.

CSREQ-1350

Bytes shall be processed MSB first (big endian).

8. USER PLANE SPECIFICATION

8.1 User plane description

The User plane covers the aspects related to the transmission of user data. Refer to section 5.1 for details on the user plane.

8.2 Addressing scheme

(To be revised in B2)

8.2.1 Unicast addressing

CSREQ-1360

The UT shall be identified by a 16-bit L2 address assigned during the logon process. This address should be associated to its 24-bit ICAO address in the ground segment element responsible for the logon procedure while the UT is logged on the system.

CSREQ-1370

The L2 ranges for UT addressing shall be (in hexadecimal notation):

- from 0x0000 to 0x007F: Multicast addresses
- from 0x0080 to 0x00FF: Reserved addresses
- from 0x0100 to 0xFFFE: Unicast addresses
- 0xFFFF: Broadcast address

CSREQ-1380

Each GS element shall be assigned a unique 8-bit L2 address used for all communications in which L2 addressing is required.

CSREQ-1390

The L2 ranges for GS element addressing shall be (in hexadecimal notation):

- from 0x00 to 0x7F: Reserved addresses
- from 0x80 to 0xFE: Unicast addresses
- 0xFF: Reserved address

8.2.2 Multicast addressing

CSREQ-1400

The L2 broadcast address shall be 0xFFFF in hexadecimal notation.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE: 75 of 228

CSREQ-1410

The L2 range for multicast addresses shall be from 0x0000 to 0x007F in hexadecimal notation. A mapping between L2 and L3 multicast groups shall be performed by the GS element responsible for multicast subscriptions management.

8.3 Security

CSREQ-6020

The CS shall not support any mechanism for user plane data encryption.

CSREQ-6030

The CS shall not support any mechanism for user plane data authentication.

CSREQ-6040

The CS shall allow transparent support of end-to-end security countermeasures applied to user plane data.

8.4 Network layer adaptation functions

8.4.1 ATN/IPS

8.4.1.1 Mapping between link layer and network layer addresses

(To be revised in B2)

CSREQ-1420

The UT link layer address shall be derived from the aircraft network layer home address (or care-of-address, TBC), which contains the ICAO 24-bit aircraft address identifier.

Note: The ICAO 24-bit Aircraft Address would be deduced from the ATN/IPS L3 Home address (HoA). This is TBC depending on whether this address is accessible from the inner ATN/IPS header in the HA-MN tunnel (depending on MSP security specifications). If not, the address could be deduced from the CoA (TBC depending on the CoA forming method proposed by the ICAO).

CSREQ-1425

[Placeholder - Multicast address mapping]

8.4.1.2 QoS

(To be revised in B2)

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:76 of 228

CSREQ-1430

Every administrative domain shall make use of Differentiated Services (DiffServ) as specified in [RD-11] enabling DiffServ CoS.

CSREQ-1440

Administrative domains shall assign ATN/IPS application traffic to Assured Forwarding (AF) Per-Hop-Behaviour (PHB) as specified in [RD-12].

CSREQ-1450

Traffic in ATN/IPS addressed traffic shall be classified in the DiffServ Code Point (DSCP) header field by following the COCRv2 air-ground addressed CoS categories presented in Table 8-1 (TBC). It is allowed to reduce CoS number by aggregating both CoS into the higher category of both.

COS	ET	TD _{95-FRS}	CUIT-FRS	I _{UCT-FRS}	A _{P-FRS}	A _{U-FRS}	Service Type
DG-A	Reserved (rsvd)	9.8	rsvd	5.0E-8	rsvd	rsvd	NET Data
DG-C	5.0	1.4	0.9996	5.0E-8	0.999995	0.9995	
DG-D	7.8	2.4	0.9996	5.0E-8	0.999995	0.9995	
DG-E	8.0	3.8	0.996	5.0E-6	0.9995	0.9965	
DG-F	12.0	4.7	0.996 0.996 0.996	5.0E-8	0.9995	0.9965	AIS. A-G Data
DG-G	24.0	9.2		5.0E-6	0.9995	0.9965	
DG-H	32.0	13.6		5.0E-6	0.9995	0.9965	
DG-I	57.6	26.5	0.996	5.0E-6	0.9995	0.9965	
DG-J		13.6	// 1	5.0E-8	0.9995	0.995	
DG-K	Not	26.5	Not	5.0E-10	0.9995	0.995	AOC A-G Data
DG-L	available	51.7	available	5.0E-10	0.9995	0.995	

 Table 8-1: Air-ground Addressed CoS categories

CSREQ-1460

Mapping rules between services and DSCP field shall be as specified in TBD.

8.4.1.3 Compression

8.4.1.3.1 Header compression

CSREQ-1470

For user traffic, the UT and GES may implement RObust Header Compression framework (ROHC) as specified in [RD-13]. If it is implemented, the following profiles shall be supported:

- UDP profile (defined in [RD-15]) and
- IP-Only profile (defined in [RD-16]).

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:77 of 228

Note: Benefits regarding the support of other profiles are under evaluation and still TBC.

8.4.1.3.2 Data compression

CSREQ-1480

Compression techniques for data should not be used.

Note: This is due to the small size of payload and in line with the fact that no data compression is used in practice with ATN/OSI.

8.4.2 ATN/OSI

8.4.2.1 Mapping between link layer and network layer addresses

CSREQ-1490

The UT link layer address shall be derived from the ATN NSAP address, which contains the ICAO 24-bit aircraft address identifier (ARS field).

8.4.2.2 QoS

CSREQ-1500

QoS mapping for ATN/OSI shall be as specified in TBD.

8.4.2.3 Compression

8.4.2.3.1 Header compression

CSREQ-1510

LREF header compression shall be implemented between the airborne router and A/G-Rs, as specified in the ICAO ATN SARPS [RD-20].

CSREQ-1520

ATN/OSI routers implementing LREF header compression shall maintain local directories, with entries containing the following parameters:

- Source Address
- Destination Address
- Security Parameter
- CLNP Version Number

8.4.2.3.2 Data compression

CSREQ-1530

Deflate Data Stream Mode Compression should not be used between ATN/OSI routers.

8.5 User plane forward link specification

8.5.1 Link layer specification

8.5.1.1 ARQ protocol

(To be revised in B2)

8.5.1.1.1 ARQ header format

CSREQ-1540

The ARQ header format shall include the following fields:

Flow ID	Packet Count	Fragment Count
L L L L L L L L L L L L L L L L L L L		2

where

Field	Length	Description
Flow identifier field	4 bits (forward)/3 bits (return)	This field differentiates between different flows/CoS. This field is optional for packets that are not fragmented by the encapsulation process, when ARQ is not used. It is however required by ARQ to handle retransmissions. For fragmented packets, this field is mandatory, ARQ being used or not; thus, it does not need to be added specifically for ARQ usage.
Packet Count field	4 bits	This field is optional for packets that are not fragmented by the encapsulation process, when ARQ is not used. It is however required by ARQ to handle retransmissions, as it is a counter of packets that permit to determine losses.
Fragment Count field	7 bits	This field is only used for packets that are fragmented by the encapsulation process. It is required by ARQ to number the different fragments of the same packet for handling retransmissions and for assembling the packet

Table 8-2: ARQ header fields encapsulation fields

CSREQ-1545

[Placeholder for ARQ ACK format]

8.5.1.1.2 ARQ procedure

The main ARQ procedure characteristics are as follows:

- There is one ARQ management entity per each different flow (network layer message) to send at link layer.
- Only positive ACKs can be generated.

- Retransmissions can be triggered either because of retransmission timer expiration or because of the reception of other ACKs (next ACK or previous ACK duplicated).
- It is possible to piggyback ACKs to data if there is free room in the PDU.

CSREQ-1550

The ARQ procedure shall follow the SDL diagram shown below.

The following definitions apply:

- SDU (Service Data Unit), as the packet sent/received from upper layers
- PDU (Payload Data Unit), as the packet sent/received to lower layers
- Start_TX as the signal that indicates the instants to transmit to lower layers
- Close signal to finalise the ARQ entity

The ARQ Parameters present in this diagram are:

- "Retx_Timer" the time between retransmissions if no ACK received
- "Max_Retx" the maximum number of retransmissions allowed per PDU
- *"Disc_T"* the discarding timer.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND				
DATE:	20/03/2012				
ISSUE:	Draft01	PAGE: 80 of 228			

Figure 8-1: SDL Diagram for ARQ protocol specification

The diagram above is explained in the following paragraphs for informational purposes:

Once the ARQ entity has been established (i.e. initialised) at the time of setting up the different layers for the communication (e.g. at log-on), it moves to the *Waiting* state. It can leave this state when receiving an SDU from upper layers, a PDU from lower layers or a Start_TX signal. Similarly, when the communication is finished (e.g. at log-off) a control signal is assumed to close the ARQ entity.

When the ARQ entity receives an SDU from higher layers it checks if it carries data to transmit. If positive answer, it allocates the data in the transmission buffer. When the ARQ entity receives a PDU from lower layers it checks if it carries data or not. If not, it extracts the ACK. If yes, it checks if it carries any piggybacked ACK, and extracts it and also extracts the data (call it PDU(n)). Then, the ARQ entity checks the integrity of the data, and in case of error, no action is done, i.e. the PDU(n) is discarded. Otherwise, it checks if previous data (i.e. PDU(n-1)) has been received. If yes, the corresponding ACK(n) is generated and the ARQ control functions updated (i.e. to update record about which is the last cumulative ACK generated). Before placing it in the transmission buffer, it checks if ACK(n-1) is still pending to transmit. In that case, it removes ACK(n-1) from the transmission buffer and puts ACK(n) according to cumulative facility. In case the PDU(n-1) has not been received, depending on the selected type of acknowledgments option, it generates a duplicate of the last ACK, or one SREJ for each missing PDU, or a duplicate plus a SACK bitmap indicating the missing PDUs and the already received PDUs; it updates ARQ control functions (i.e. to update record about which PDUs have been correctly received) and puts the feedback

-	REFERENCE:	ANTAR-B1	-CP-TNO-2006-IND
Indra	DATE:	20/03/2012	
	ISSUE:	Draft01	PAGE: 81 of 228

information to the transmission buffer. If there is an ACK in the PDU, the ARQ entity checks if it is the last ACK of an SDU. If yes, it sends the SDU to the upper layers, and empties this SDU from the reception buffer. If it is not the last ACK pending to complete all the fragments of the SDU, it analyses if it is a duplicated ACK, an SREJ or an SACK bitmap, in order to manage the corresponding retransmissions, and it updates the information of the received ACK.

When a Start_TX signal is received the ARQ entity updates the Retx_Timers (a timer for each fragment to count the time between retransmissions if no ACK received) and checks if the discarding timer (Disc_T) has expired or if the PDU to be transmitted exceeds the maximum number of retransmissions. If yes, if empties all the PDUs of the same SDU from the transmission buffer. Then, it checks if it has data to retransmit. If not, it checks if it has data to transmit for the first time. If not, it checks if it has ACKs (i.e. ACK, SREJ and SACK bitmap) to transmit. If yes, it generates and sends a PDU with the ACKs. In case it has data to retransmit or transmit for the first time, the ARQ entity generates the PDU and checks if there is free room in the PDU to piggyback an ACK. If not, it sends the PDU with only the data. If there is free room and it has ACK to send, it piggybacks the ACK and sends the PDU with data and ACK. Finally, it updates all the control information (i.e. buffer pointers, counters, fragments transmitted and waiting for the acknowledgment, retransmissions done and Retx_Timers blocked due to retransmissions of previous PDUs).

It should be noted that all the PSDUs from a single network layer packet can be transmitted before an ACK is received (window size depends on the number of fragments). Start Tx signal is generated by the access protocol to the physical medium.

8.5.1.2 Encapsulation

(To be revised in B2)

CSREQ-1560

The forward link encapsulation scheme shall support the integration, in the L2 header, of information optionally required for ARQ.

CSREQ-1570

The forward link encapsulation scheme shall support the flexibility required in terms of addressing capabilities: i.e. 0, 2, 3 or 4 bytes addressing field.

CSREQ-1580

The UT shall support the de-encapsulation and re-assembly of L3 data units from L2 data units using the CS custom scheme for the forward link.

CSREQ-1590

GS elements shall support the encapsulation and fragmentation of L3 data units into L2 data units using the CS custom scheme for the forward link.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:82 of 228

CSREQ-1610

The forward link encapsulation scheme used shall comply with the following:

	No	n Fr	agmented Custom S	che	eme	Head	ler									
s	Е	AF	Length	F	рт (C R Q	R (ARQ	fiel	d) (b	Source Addre	/Dest ess)		Payload		CRC-32	
0				2			3		(+2))	(+2 or or +4	- +3 4)				(+4)
	Fire	st Fi	ragment Custom Sche	eme	Hea	der										
s	E	AF	Length	PT	-	Total	Length	с	FID	PC	F	С	(Source/Dest Address)		Payload	
0				2				4					6 (+2 or	r +3		
	Inte	erme	ediate Fragment Custo	om	Head	der					_		01 +	4)		
s	Е	AF	Length	С	FID	PC	FC	(Sourc Addı	e/Dest ress)		Pa	ayload			
0				2		-	-	4		(+2 c or +	or +3 ⊦4)					
	La	st Fi	ragment Custom Head	der												
S	Е	AF	Length	с	FID	PC	FC		(Sourd) Add	ce/Dest ress)		Pa	ayload		CRC-32	
0				2				4		(+2 or	or +3 +4)				(+4)	

where

Field	Length	Description
S and E flags: Start and End bits	1 bit each	These fields indicate if the packet is non-fragmented (11), if it is the first fragment (10), the last fragment (01) or an intermediate fragment (00) of a fragmented packet.
AF field: Address Format	2 bits	 This field indicates the address format that will be contained in the encapsulation header. It can take the following values: 00: No address field/label re-use 01: 2 bytes address field: UT destination address 10: 3 bytes address field: 2 bytes destination UT address + 1 byte source GS element address 11: 4 bytes address field: 3 bytes destination UT ICAO address + 1 byte source GS element address
Length field	12 bits	This field indicates the length of the L2 payload size for the current fragment (for fragmented packet) or the total length of the payload for non- fragmented packet. This length enables physical payload sizes up to 4099 bytes.
Total Length field	13 bits	This field indicates the total length of the L3 payload when fragmented. This length enables L3 packet sizes up to 8192 bytes.
PT field: Payload Type	3 bits	This field indicates the type of the contained payload that can be ATN/IPS, ATN/OSI, Signalling, compressed data, etc.
C flag: CRC Presence	1 bits	This field indicates if a 4 bytes CRC field is present as a trailer in the current packet (when un-fragmented).
ARQ flag	1 bits	This field indicates whether the ARQ process is used, implying an additional 2 bytes field for un-fragmented packet. When fragmented, all the required information for the ARQ process is already included in the encapsulation header.
ARQ field: ARQ Information	2 bytes	This field contains the information required for the ARQ process when the ARQ bit is set to 1. It shall comply with §8.5.1.1.1.
R field: Reserved	3 bits / 1 bit	This field is reserved for future use. 1 bit if fragmented.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012DescriptionDescription

ISSUE: Draft01 PAGE: 83 of 228

Field	Length	Description
Source/Dest Address field	optional field of 2, 3 or 4 bytes	This field is optional and contains the source and destination addresses as indicated by the Address Format (AF) field.
FID field: Flow ID	4 bits	This field identifies the Class of Service (or the flow) of the current packet. This information is used by the ARQ process and by the re-assembly process when the packet is fragmented.
PC field: Packet Count	4 bits	This field identifies the packet currently sent, it is incremented for each packet sent toward a specific destination, using an independent counter for each flow ID. This field is used by ARQ process and by re-assembly process when the packet is fragmented.
FC field: Fragment Count	7 bits	This field is used as a counter for the fragments composing a packet. This field is used by ARQ process and by re-assembly process when the packet is fragmented.
CRC-32 field	4 bytes	When indicated by the C field or by system design, a 4 bytes trailer is added after the payload when un-fragmented or at the end of the last fragment when fragmented.

Table 8-3: Forward link encapsulation fields

8.5.1.3 Security

Refer to 8.3.

8.5.2 Physical layer specification

The following section specifies the physical layer of the user plane FWD link.

8.5.2.1 Burst types

CSREQ-1711

The User plane FWD link shall support the following burst types:

• FCH burst

CSREQ-1720

The FCH burst shall support adaptive coding and modulation (ACM). The following MODCODs shall be supported:

- QPSK 1/3, 1/2, 2/3
- 8-PSK 1/2, 2/3
- 16-APSK 2/3

8.5.2.2 Burst waveform generation

CSREQ-1712

The burst waveform generation shall be applied to the PSDU and shall be composed of a sequence of functional modules as represented in Figure 8-2. The functional modules shall be:

- Physical Layer Adaption
- Error Detection
- Base Band scrambling
- FEC Encoding, which includes the inner encoding and the bit interleaver
- Bit Mapping into Constellation
- Symbol Interleaving
- Physical Layer Framing
- Base-band Pulse Shaping and Quadrature Modulation

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 85 of 228

Figure 8-2: Forward link burst waveform generation

Draft01

DATE: 20/03/2012

ISSUE:

PAGE: 86 of 228

CSREQ-1710

....

....

....

Indra

Figure 8-3: FCH burst frame structure

REFERENCE:	ANTAR-B1	-CP-TNO-2006-IND	
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 87 of 228	

8.5.2.3 Physical Layer Adaption

CSREQ-1731

The Physical Layer Adaption module shall perform:

- Interface with Layer 2
- Padding insertion
- FWD_DD (FWD Data Descriptor) insertion

CSREQ-1732

The input stream of the Physical Layer Adaption module shall be a FWD_PSDU and the output stream shall be a FWD_DD Header followed by a FWD_BB_DATAFIELD, as detailed in Figure 8-4.

Figure 8-4: Data format at the output of the Physical Layer Adaption module

CSREQ-1740

A single PSDU shall be mapped onto a single FWD burst.

8.5.2.3.1 Interface with Layer 2

CSREQ-1730

The Physical Layer Adaption module shall map FWD_PSDU of 3 types of layer 2 encapsulation protocols:

- GSE
- Protocol 1 (TBD)
- Protocol 2 (TBD)

REFERENCE:	ANTAR-B1-CP-TNO-2006-IN				
DATE:	20/03/2012				
ISSUE:	Draft01	PAGE: 88 of 228			

CSREQ-1760

The FWD_PSDU size (in bytes) shall be variable in the range. The maximum PSDU size (Max. N_{FWD_PSDU}) depending on the selected MODCOD shall be as detailed in Table 8-4:

Mode	Max. N _{FWD_PSDU} [Maximum PSDU size (bytes)]
QPSK 1/3	1018
QPSK 1/2	1530
QPSK 2/3	2042
8-PSK 1/2	2298
8-PSK 2/3	3066
16-APSK 2/3	4090

Table 8-4: Maximum PSDU size (bytes)

8.5.2.3.2 Padding insertion

CSREQ-1761

 $(N_{FWD_BB_DFL} - N_{FWD_PSDU})$ bytes shall be appended after the FWD_PSDU according to Figure 8-4. The contents of the padding bytes shall be "0x00".

8.5.2.3.3 FWD_DD (FWD Data Descriptor) insertion

CSREQ-1762

A fixed length header (FWD_DD) of N_{FWD_DD} = 2 bytes (bits h_0 - h_{15}) shall be inserted in front of the BB_DATAFIELD according to Figure 8-4.

CSREQ-1770

The FWD_DD header shall contain the following fields:

Bits	Field	Field size	Description
h ₀	PSDU Size Flag	1 bit	It indicates if the PSDU Size is present in the FWD_DD header
h ₁	Alternate Descriptor Flag	1 bit	It indicates if the Alternate Descriptor is present in the FWD_DD header
h ₂ -h ₃	L2 Protocol Type	2 bits	It indicates the L2 protocol used in the FWD_PSDU

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:89 of 228

h ₄ -h ₁₅	Contents field	12 bits	It contains the PSDU size or the Alternate Descriptor (see CSREQ-6050)
---------------------------------	----------------	---------	--

Table 8-5: FWD_DD header fields

CSREQ-6050

The mapping of the FWD_PSDU Size Flag, FWD Alternate Descriptor Flag and the FWD Contents field shall be as specified in Table 8-6.

h ₀ (FWD_PSDU Size Flag)	h ₁ (FWD Alternate Descriptor Flag)	h₄-h ₁₅ (FWD Contents Field)
1	0	"Contents" field is filled with the PSDU size, in bytes
0	1	"Contents" field is filled with the Alternate Descriptor
		Note: Alternate Descriptor field is reserved for future use
0	0	N.A
1	1	N.A

Table 8-6: FWD Contents field mapping

CSREQ-1810

The FWD Protocol Type field shall indicate which L2 entity (encapsulation protocol) is the client of the burst. It is a 2-bit field coded as detailed in Table 8-7.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

 Issue:
 Draft01
 Page: 90 of 228

h2 h3
(FWD Protocol Type)Description00Reserved01GSE10TBD11TBD

Table 8-7: RTN Link Protocol Type field mapping

8.5.2.4 Error Detection (CRC-32 encoder)

CSREQ-1811

The FWD Error Detection module shall compute the CRC parity bits in order to detect erroneous packets in the receiver side and to provide a packet quality indicator.

CSREQ-1812

The input stream of the Error Detection module shall be a FWD_DD header followed by a FWD_BB_DATAFIELD and the output stream shall be a FWD_PPDU, as illustrated in the Figure 8-6.

Figure 8-6: Data format at the output of the FWD Error Detection module

CSREQ-1820

The 32-bit CRC (CRC_32 field) shall be appended after the BB_DATAFIELD, as illustrated in Figure 8-6.

CSREQ-1830

The CRC_32 shall be computed over:

- the FWD_DD header
- the FWD_BB_DATAFIELD

CSREQ-2030

The CRC parity bits are computed using the following cyclic generator polynomial:

 $G(X) = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

CSREQ-2040

The CRC parity bits (FWD_CRC_32 field) shall be the remainder of the division of the input stream by the polynomial G(X). (

 $CRC = remainder [X^{32}M(X) : G(X)]$

where,

- all the arithmetic is in modulo 2
- *n* is the number of bits of the CRC encoded message
- M(X) is the input stream to be encoded expressed as a polynomial as a binary coefficients: $M(X) = M_0 X^{k-1} + M_1 X^{k-2} + ... + M_{k-2} X + M_{k-1}$

CSREQ-2041

The CRC parity bits shall be generated by the shift register structure shown in Figure 8-7. The CRC parity bits shall be computed according to the following procedure:

- 1. The shift register cells shall be initialized to 1.
- 2. All the switches shall be set in the A position.
- 3. The shift register is clocked a number of times equal to the number of input bits (FWD_DD + FWD_BB_DATAFIELD). The MSB of the FWD_DD shall be the first bit to be inserted in the shift register.
- 4. Once the last input bit has been inserted in the shift register (LSB of FWD_BB_DATAFIELD), the switches shall be set to position B, forcing that the inputs to the shift register are 0.
- 5. The shift register shall be clocked an additional number of times equal to the number of CRC parity bits (i.e. 32). The 32 additional bits shall be the CRC parity bits (FWD_CRC_32 field).
- 6. The CRC parity bits shall be transmitted in the order of generation (MSB first).

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01

PAGE: 92 of 228

Figure 8-7: CRC_32 computation

8.5.2.5 Base-Band scrambling

CSREQ-2051

The Base-band scrambling module shall perform data randomisation in order to ensure adequate binary transitions.

CSREQ-2052

The input stream of the Base-band scrambling module shall be a FWD_PPDU and the output stream shall be a FWD_S_PPDU (FWD Scrambled PPDU).

(Note: the length of the input and output data stream (FWD_PPDU and FWD_S_PPDU) is the same, as the Baseband scrambling does not add redundancy)

CSREQ-2050

The Base-band scrambling shall be synchronous with the FWD_PPDU.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:93 of 228

CSREQ-2060

The scrambled frame (FWD_S_PPDU) shall be generated by the following feed-back shift register: TBD

8.5.2.6 FEC Encoding

CSREQ-6071

The FEC Encoding module shall perform the following functions:

- Inner channel coding (IRA LDPC)
- Bit interleaving

CSREQ-6072

The input stream of the FEC encoding module shall be a FWD_S_PPDU and the output stream shall be 4 FWD_FECFRAME, as illustrated in the following figure.

Figure 8-8: Output stream of the FEC Encoding before the bit interleaving

CSREQ-6070

The FWD_S_PPDU ($N_{FWD_S_PPDU}$ bits) shall be divided in 4 FWD_BBFRAME of K_{Idpc} bits each starting from the MSB (i.e. FWD_BBFRAME1 contains the MSB of FWD_S_PPDU).

 K_{ldpc} depends on the supported MODCOD types (Mode). The coding parameters are provided in the following table.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:94 of 228

MODCOD Id	MODCOD	N _{FWD_S_PPDU} (bits)	K _{ldpc} (bits)	N _{ldpc} (bits)
MODCOD1	QPSK 1/3	8192 bits	2048 bits	6144 bits
MODCOD2	QPSK 1/2	12288 bits	3072 bits	6144 bits
MODCOD3	QPSK 2/3	16384 bits	4096 bits	6144 bits
MODCOD4	8-PSK 1/2	18432 bits	4608 bits	9216 bits
MODCOD5	8-PSK 2/3	24576 bits	6144 bits	9216 bits
MODCOD6	16-APSK 2/3	32768 bits	8192 bits	12288 bits

Note: QPSK 2/3 and 8-PSK 2/3 shall be punctured according to the puncturing patterns specified in CSREQ-2120.

Table 8-8: BBFRAME block size

CSREQ-6080

The 4 FWD_BBFRAME belonging to the same FWD_S_PPDU shall be encoded with the same MODCOD.

8.5.2.6.1 Inner encoding (LDPC)

CSREQ-2080

Each FWD_BBFRAME_i (K_{Idpc} bits) shall be encoded using IRA LDPC codes to generate a FWD_FECFRAME_i (N_{Idpc} bits).

CSREQ-2090

Figure 8-9: Format of data after FEC encoder (LDPC)

CSREQ-2110

The FWD_BBFRAME shall be encoded following the procedure specified in section 14.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 95 of 228

CSREQ-2120

The output of the LDPC encoder shall be punctured according to the puncturing patterns detailed in the following table in order to obtain the desired code rate. The puncturing pattern shall only be applied over the parity bits (LDPCFEC field in Figure 8-9), systematic (FWD_BBFRAME field in Figure 8-9) bits are not affected by the puncturing.

MODCOD Id	MODCOD	Original code	Puncturing pattern (p) [p _{2k} p _{2k+1}]	Comments
MODCOD 1	QPSK 1/3	1/3	[1 1]	No puncturing
MODCOD 2	QPSK 1/2	1/2	[1 1]	No puncturing
MODCOD 3	QPSK 2/3	1/2	[1 0]	Puncturing pattern over the parity bits
MODCOD 4	8-PSK 1/2	1/2	[1 1]	No puncturing
MODCOD 5	8-PSK 2/3	1/2	[1 0]	Puncturing pattern over the parity bits
MODCOD 6	16-APSK 2/3	1/2	[1 1]	No puncturing

Notes:

 the punctured code is obtained by periodically-repeating over the parity bits the puncturing pattern p, starting for the MSB of the LDPCFEC field

- In the puncturing pattern, '1' denotes the bit positions related to the transmitted and bits, and '0' denotes the bit positions related to the punctured bits.
- p_{2k}, p_{2k+1} represent the LDPC parity bits

Table 8-9: LDPC puncturing patterns

The transmitted sequence for code rates without puncturing (1/3 and 1/2) shall be:

i₀, i₁, i₂, i₃,, i_{kldpc-3}, i_{kldpc-2}, i_{kldpc-1}, p₀, p₁, p₂, p₃,, p_{nldpc-kldpc-3}, p_{nldpc-kldpc-2}, p_{nldpc-kldpc-1}

The transmitted sequence for code rates with puncturing (2/3) shall be:

i₀, i₁, i₂, i₃,, i_{kldpc-3}, i_{kldpc-2}, i_{kldpc-1}, p₀, p₂,p_{nldpc-kldpc-4}, p_{nldpc-kldpc-2}

where i_k stands for the LPDC code information bits (FWD_BBFRAME bits) and p_n stands for the LDPC code parity bits.

CSREQ-7260

The de-puncturing shall be performed by reconstructing the original code rate according to CSREQ-2120 by inserting "erasure" bits into the received data stream at the positions in which the original rate coded bits were deleted on the transmitting side.

The "erasure" bits shall be 0.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 96 of 228	

8.5.2.6.2 Bit interleaving (for 8-PSK and 16-APSK only)

CSREQ-2130

The output of the LDPC encoder and puncturing (FWD_FECFRAME) shall be bit interleaved using a block interleaver (row/column) with the parameters defined in the following table:

Modcod Id	MODCOD	N _{FWD} (Rows)	M _{FWD} (Columns)		
MODCOD 1	QPSK 1/3	N.A	N.A		
MODCOD 2	QPSK 1/2	N.A	N.A		
MODCOD 3	QPSK 2/3	N.A	N.A		
MODCOD 4	8-PSK 1/2	3072	3		
MODCOD 5	8-PSK 2/3	3072	3		
MODCOD 6	16-APSK 2/3	3072	4		
Note:					
 N stands for the number of rows 					
– M stan	ds for the number o	f columns			

Table 8-10: Bit interleaver parameters

CSREQ-6160

The bit interleaver depth shall be 1 FWD_FECFRAME (1 Code Word)

CSREQ-6170

On the transmitter side, the encoded bits shall be serially written into the interleaver columnwise and shall be serially read out row-wise according to Figure 8-10. MSB of FWD_FECFRAME shall be written and read out first.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE: 97 of 228

Figure 8-10: Bit interleaving scheme (Tx side)

CSREQ-6180

On the receiver side, the encoded bits shall be serially written in row-wise and shall be serially read in column-wise. MSB of FWD_FECFRAME shall be written and read out first.

8.5.2.7 Bit mapping into constellation

CSREQ-2141

The Bit Mapping module shall perform the mapping of the incoming bits into symbols (complex values) according to the specified constellation order.

CSREQ-2142

The input stream of the bit mapping module shall be a FWD_FECFRAME and the output stream shall be a FWD_XFECFRAME (FWD compleX FECFRAME)

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01

PAGE: 98 of 228

FWD_XFECFRAME

–[N_{FWD_XFEFRAME}=(N_{ldpc}/η_{MOD}) symbols]-

Figure 8-11: Data format at the output of the Bit mapping module

CSREQ-2140

Each FWD_FECFRAME shall be serial-to-parallel converted. Three parallelism levels shall be supported (parallelism level = η_{MOD})

- η_{MOD}=2 for QPSK
- η_{MOD}=3 for 8-PSK
- $\eta_{MOD}=4$ for 16-APSK

Then, each parallel sequence shall be mapped into constellation, generating a complex (I,Q) sequence (FWD_XFECFRAME) according to the modulation efficiency (η_{MOD}) as described in section 8.5.2.7.1 for η_{MOD} =2, section 8.5.2.7.2 for η_{MOD} =3 and section 8.5.2.7.3 for η_{MOD} =4.

CSREQ-6200

The number of symbols after the bit mapping shall be constant, as detailed in the following table

Modcod Id	MODCOD	N _{Idpc} (bits)	Mod. efficiency	N _{FWD_XFECFRAME} (symbols)
		FWD_FECFRAME size	(η _{мор})	FWD_XFECFRAME size
MODCOD 1	QPSK 1/3	6144 bits	2	3072 symbols
MODCOD 2	QPSK 1/2	6144 bits	2	3072 symbols
MODCOD 3	QPSK 2/3	6144 bits	2	3072 symbols
MODCOD 4	8-PSK 1/2	9216 bits	3	3072 symbols
MODCOD 5	8-PSK 2/3	9216 bits	3	3072 symbols
MODCOD 6	16-APSK 2/3	12288 bits	4	3072 symbols

Table 8-11: Bit mapping parameters

CSREQ-6100

The FWD_FECFRAMEs belonging to the same FWD_S_PPDU (4 FWD_FECFRAME) shall be modulated (bit-mapped) using the same modulation format.

REFERENCE:	E: ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 99 of 228	

8.5.2.7.1 Bit mapping into QPSK constellation

CSREQ-2150

The bit mapping into QPSK constellation shall be compliant with Figure 8-12. Two FWD_FECFRAME bits shall be mapped to a QPSK symbol.

Figure 8-12: Bit mapping into QPSK modulation

CSREQ-2160

For the QPSK modulation, the normalised average energy per symbol shall be equal to $\rho^2 = 1$.

8.5.2.7.2 Bit mapping into 8-PSK constellation

CSREQ-2170

The bit mapping into the 8-PSK constellation shall be compliant with Figure 8-13. Three FWD_FECFRAME bits shall be mapped to a 8-PSK symbol.

REFERENCE:	ANTAR-B1	-CP-TNO-2006-IND
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 100 of 228

Figure 8-13: Bit mapping into 8-PSK modulation

CSREQ-2180

For the 8-PSK modulation, the normalised average energy per symbol shall be equal to $\rho^2 = 1$.

8.5.2.7.3 Bit mapping into 16-APSK constellation

CSREQ-2190

The 16-APSK modulation constellation shall be composed of two concentric rings of uniformly spaced 4 and 12-PSK points respectively in the inner ring of radius R_1 and the outer ring of radius R_2 (See Figure 8-14).

CSREQ-2200

The bit mapping of the 16-PSK constellation shall be compliant with Figure 8-14. Four FWD_FECFRAME bits shall be mapped to a 16-APSK symbol.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 101 of 228	

Figure 8-14: Bit mapping into 16-APSK modulation

CSREQ-2210

The ratio of the outer circle radius to the inner circle radius shall comply with Table 8-12: Optimum constellation radius ratio for 16-APSK:

Code rate Modulation/coding spectral efficiency		γ
2/3	2.66	3.15

Table 8-12: Optimum constellation radius ratio for 16-APSK

Note: the ratio between the outer and inner circle depends on the code rate.

CSREQ-2220

For the 16-APSK modulation, the $R_1^2 + 3R_2^2 = 4$ equality shall be complied with, in order to ensure that the average energy per symbol shall be equal to $\rho^2 = 1$.

8.5.2.8 Symbol interleaving

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:102 of 228

CSREQ-6211

The Symbol Interleaving module shall interleave the symbols of 4 FWD_XFECFRAMES in order to exploit the time diversity.

CSREQ-6212

The input stream of the Symbol Interleaving module shall be 4 FWD_XFECFRAME and the output shall be a FWD_I_XFRAME (FWD Interleaved complex FRAME)

Figure 8-15: Data format at the output of the Symbol Interleaving module

CSREQ-6210

4 FWD_XFECFRAMES shall be symbol interleaved using a block interleaver (row/column) with the parameters defined in the following table:

Modcod Id MODCOD		D	Ρ	N _{FWD_I_XFRAME}
		(Number of rows)	(Number of colums)	(symbols)
MODCOD 1	QPSK 1/3	192	64	12288 symbols
MODCOD 2	QPSK 1/2	192	64	12288 symbols
MODCOD 3	QPSK 2/3	192	64	12288 symbols
MODCOD 4	8-PSK 1/2	192	64	12288 symbols
MODCOD 5	8-PSK 2/3	192	64	12288 symbols
MODCOD 6	16-APSK 2/3	192	64	12288 symbols
Note:				
 D stand 				
 P stand 	ds for the numbe	r of columns		

Table 8-13: Symbol interleaver parameters

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 103 of 228	

CSREQ-6230

On the transmitter side, the symbols shall be serially written in column-wise (starting from the MSB of FWD_XFECFRAME1 and ending with the LSB of FWD_XFECFRAME4) and shall be serially read out row-wise according to the following figure.

CSREQ-6240

On the receiver side, the symbols shall be serially written in row-wise and shall be serially read out column-wise.

8.5.2.9 Physical Layer Framing

CSREQ-2021

The Physical Layer Framing module shall perform the following process:

- PLHEADER (Physical Layer Header) generation and insertion.
- PB (Pilot Block) insertion.
- FWD_PREAMBLE insertion.
- FWD_POSTAMBLE insertion.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDate:20/03/2012Issue:Draft01Page:104 of 228

CSREQ-2022

The input stream of the Physical Layer Framing sub-system shall be a FWD_I_XFRAME and the output a FWD_PLFRAME.

Figure 8-17: Data format at the output of the Physical layer framing module

CSREQ-2020

The FWD_PLFRAME shall be surrounded by guard time which allows for power switch-off transients and system timing errors. The guard time of the FCH shall be 12 symbols.

8.5.2.9.1 PLHEADER generation and insertion

CSREQ-1940

The FWD_BD (FWD Burst Descriptor) field shall break into:

• The MODCOD_ID field (3 bits) (TBC)

Figure 8-18: Construction and insertion of FWD_BD header

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 105 of 228

CSREQ-1950

The MODCOD_Id field shall indicate which MODCOD has been used for transmitting the FWD_I_XFRAME. The MODCOD_Id shall be coded on $N_{FWD_BD} = 3$ bits (s₀, s₁, s₂) according to the following table:

Mada	MODCOD_Id			
wode	bit s ₀	bit s ₁	bit s ₂	
QPSK 1/3	0	0	1	
QPSK 1/2	0	1	0	
QPSK 2/3	0	1	1	
8-PSK 1/2	1	0	0	
8-PSK 2/3	1	0	1	
16-APSK 2/3	1	1	0	
RFU	0	0	0	
RFU	1	1	1	

 Table 8-14: Feasible forward link MODCODS for Traffic burst

CSREQ-1970

The FWD_BD field shall be encoded with TBD block code, generating the FEC_FWD_BD field of $N_{FEC_FWD_BD}$ bits length.

CSREQ-1971

The FEC_FWD_BD field shall be modulated in QPSK, according to the specification in section 8.5.2.7.1, generating the PLHEADER of N_{FWD_H} symbols length.

CSREQ-1972

The PLHEADER shall be inserted before the FWD_I_XFRAME, as illustrated in Figure 8-17.

8.5.2.9.2 PB (Pilot Blocks) insertion

CSREQ-1981

The FWD_I_XFRAME shall be divided in constant-length fragments of N_{FWD_S} = 32 symbols each, called FWD_I_XFRAME_i (See Figure 8-17).

The number of fragments per FWD_I_XFRAME shall be as detailed in the following table.

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01 **PAGE:** 106 of 228

MODCOD_Id	FWD_I_XFRAME length (symbols)	N _{FWD_FRAG} (Number of 32- symbols fragments)		
From MODCOD1 to MODCOD6	12288 symbols	384 fragments		
Note: The I_XFRAME length does not depend on the MODCOD.				

Table 8-15: Number of fragments (N_{FWD_FRAG}) per FWD_I_XFRAME

CSREQ-1980

A PB (Pilot Block) field of N_{PB} =3 symbols shall be inserted after each FWD_I_XFRAME_i with the exception of the last fragment (FWD_I_XFRAME_N), as illustrated in Figure 8-17.

CSREQ-1990

The PB field shall be modulated in QPSK following the specification described in section 8.5.2.7.1.

CSREQ-6150

The contents of each PB field shall be the following: TBD

8.5.2.9.3 PREAMBLE insertion

CSREQ-1901

The FWD_PREAMBLE shall be inserted before the PLHEADER, as illustrated in Figure 8-17.

CSREQ-1900

The FWD_PREAMBLE shall consists of a N_{P} = 100 symbol (TBC) string modulated in QPSK format following the specification described in section 8.5.2.7.1

CSREQ-1910

The FWD_PREAMBLE sequence shall be: TBD

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 ISSUE:
 Draft01
 PAGE: 107 of 228

for $|f| < f_{\alpha}(1-\alpha)$

8.5.2.9.4 POSTAMBLE insertion

CSREQ-1902

The FWD_POSTAMBLE shall be inserted after the last FWD_I_XFRAME fragment (FWD_I_XFRAME₃₈₃), as illustrated in Figure 8-17.

CSREQ-1903

The FWD_POSTAMBLE shall consists of a N_{FWD_PO} = TBD symbol string modulated in QPSK format following the specification described in section 8.5.2.7.1

CSREQ-1904

The FWD_POSTAMBLE sequence shall be: TBD

8.5.2.10 Base-band pulse shaping and quadrature modulation

CSREQ-2010

After the bit mapping, the FWD_PLFRAME shall be shaped and quadrature modulated.

CSREQ-2230

I and Q signals shall be shaped using a Square Root Raised Cosine with a roll-off factor α =0.2.

CSREQ-2240

The baseband SRRC filter shall have a theoretical function defined by the following expression.

$$H(f) = \left\{ \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2f_N} \left[\frac{f_N - |f|}{\alpha} \right] \right\}^{\frac{1}{2}} \qquad \text{for } f_N(1 - \alpha)$$

$$H(f) = 0 \text{ for } |f| > f_N(1+\alpha),$$

H(f) = 1

where $f_N = \frac{R_s}{2}$ is the Nyquist frequency and α is the roll-off factor.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 108 of 228	

CSREQ-2250

The quadrature modulation shall be performed by multiplying the In-phase component (I) by $\cos(2\pi f_0 t)$ and the Quadrature component (Q) by $-\sin(2\pi f_0 t)$. I and Q signals shall be added to conform the modulation output.

Figure 8-19: Forward link modulation

8.6 User plane return link specification

8.6.1 Link layer specification

8.6.1.1 Random access

CSREQ-6470

The CS shall support the ALOHA state machine depicted below for RTN link random access. It includes the following steps:

- Every time a transmission is going to happen, a random delay (back-off delay), following an exponential distribution (pdf = $\lambda e^{-\lambda x}$), is applied. The mean value of this delay, defined as $\frac{1}{\lambda}\lambda = 2^n \cdot tx_backoff$, increases with the number of transmissions (n). $tx_backoff$ is a configuration parameter associated to congestion control.
- After the application of the transmission back-off delay, a persistency check is performed. With a probability equal to the persistency parameter, the transmission is actually performed. Otherwise a new delay is applied, using the procedure described in the previous bullet. This operation is repeated until the PSDU is transmitted or a time-out is exceeded. In this latter case the PSDU is dropped without being transmitted.
- After every (effective) transmission a timer is started and if it exceeds the time-out, a retransmission is attempted.

CSREQ-6480

Several ALOHA state machines as defined in CSREQ-6470 shall run in parallel (ALOHA state machine bank). Each of them shall work independently, scheduling pending data for transmission once the state machine becomes idle (i.e., previous transmission has either succeeded or failed).

CSREQ-6490

A PSDU scheduled according to the ALOHA state machine bank shall be put into a FIFO (TBC, to be revised in B2 considering CoS refinements) transmission buffer before actual (physical) transmission.

Note: There is a single physical transmitter.

CSREQ-6492

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:110 of 228

[Placeholder for the strategy to be adopted with the remaining LSDU in case a LSDU fragment can not been transmitted by an ALOHA state machine (TX dropped)].

CSREQ-6494

[Placeholder for TBC requirements associated to in-order transmission of LSDU fragments]

8.6.1.2 ARQ protocol

8.6.1.2.1 ARQ header and ACK format

CSREQ-6496 (preliminary, integration with encapsulation is pending)

The ARQ header shall include the following fields:

Counter Reserved

where

Field	Length	Description
Counter	6 bits	This field provides a sequence number for PSDU identification.
Reserved	2 bits	TBD

Table 8-16: ARQ header fields

CSREQ-6498

[Placeholder for ARQ ACK format]

8.6.1.2.2 ARQ procedure

CSREQ-6500

An ARQ mechanism shall be integrated with each ALOHA state machine.

CSREQ-6510

ARQ for a single ALOHA state machine shall be based on a stop-and-wait strategy, with timeouts triggering retransmissions.

CSREQ-6520

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:111 of 228

One ARQ header management entity shall be active per CoS category and shall be common for the ALOHA state machine bank associated to the category.

CSREQ-6525

Retransmission timer shall be started when the PSDU is forwarded to the physical layer.

CSREQ-6530

Retransmission timer shall be set to PSDU frame transmission time plus RTT plus a configurable processing time plus a configurable margin.

8.6.1.3 Encapsulation

CSREQ-2260

The return link encapsulation scheme shall support the integration, in the L2 header, of information optionally required for ARQ.

CSREQ-2270

The return link encapsulation scheme shall support the flexibility required in terms of addressing capabilities: i.e. 0, 2, 3 or 4 bytes addressing field.

CSREQ-2280

The UT shall support the encapsulation and fragmentation of L3 data units into L2 data units using the CS custom scheme for the return link.

CSREQ-2290

GS elements shall support the de-encapsulation and re-assembly of L3 packets from L2 fragments using the CS custom scheme for the return link.

CSREQ-2310 (to be revised in B2)

The return link encapsulation scheme used shall comply with the following:

Non	Fragmented	Custom	Scheme	Header
11011	riuginontou	ouotonn	001101110	ilouuoi

S E AF R Q	Length	PT	С	R	(ARQ field)	(Source/Dest Address)	Payload	CRC-32	
0		2		3	3 (+2) (+2 or	or +3 +4)	(++	4)

REFERENCE: ANTAR-B1-CP-TNO-2006-IND 20/03/2012 DATE: Draft01

ISSUE:

PAGE: 112 of 228

where

Field	Length	Description
S and E flags: Start and End bits	1 bit each	These fields indicate if the packet is non-fragmented (11), if it is the first fragment (10), the last fragment (01) or an intermediate fragment (00) of a fragmented packet.
AF field: Address Format	2 bits	 This field indicates the address format that will be contained in the encapsulation header. It can take the following values: 00: No address field/label re-use 01: 2 bytes address field: UT source address 10: 3 bytes address field: 2 bytes source UT address + 1 byte destination GS element address 11: 4 bytes address field: 3 bytes source UT ICAO address + 1 byte destination GS element address
ARQ flag	1 bits	This field indicates whether the ARQ process is used, implying an additional 2 bytes field for un-fragmented packet, and for every fragment when fragmented.
Length field	11 bits not fragmented/ 8 bits fragmented	This field indicates the length of the L2 payload size for the current fragment (for fragmented packet) or the total length of the payload for non- fragmented packet. This length enables physical payload sizes up to 259 bytes (this length is sufficient in regards to the considered physical burst size over the return link, which is below 200 bytes).
PT field: Payload Type	3 bits	This field indicates the type of the contained payload that can be ATN/IPS, ATN/OSI, Signalling, compressed data, etc.
C flag: CRC Presence	1 bits	This field indicates if a 4 bytes CRC field is present as a trailer in the current packet (when un-fragmented).
R field: Reserved	4 bits	This field is reserved for future use.
ARQ field: ARQ Information	2 bytes	This optional field contains the information required for the ARQ process when the ARQ bit is set to 1. It shall comply with §8.6.1.1. When fragmented, the ARQ mechanism reuses the Flow ID field already present in the encapsulation header. Thus only the Packet Count and the fragment count fields are present within this ARQ field. When non fragmented, the three fields of the ARQ are required (FID, PC and FC).
Source/Dest Address field	optional field of 2, 3 or 4 bytes	This field is optional and contains the source and destination addresses as indicated by the Address Format (AF) field.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:113 of 228

Field	Length	Description
FID field: Flow ID	3 bits	This field identifies the Class of Service (or the flow) of the current packet (it permits to differentiate interleaving of various CoS or MODCODs). This field is used by re-assembly process when the packet is fragmented and by ARQ process when activated.
Total Length field	12 bits	This field indicates the total length of the L3 payload when fragmented. This length enables L3 packet sizes up to 4096 bytes.
Seq Number/CRC- 32 field	1 or 4 bytes	When indicated by the C bit or by system design, a 4 bytes trailer is added after the payload when un-fragmented or at the end of the last fragment when fragmented. When fragmented, if this option is set by system design, a 1-byte sequence number is added and used by re-assembly process to identify the fragment having the same PID in case of fragment loss.

Table 8-17: Return link encapsulation fields

8.6.1.4 Security

Refer to 8.3.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 ISSUE:
 Draft01
 PAGE: 114 of 228

8.6.2 Physical layer specification

8.6.2.1 Burst types

CSREQ-2320

On the return link the following burst types shall be implemented:

• RACH burst (Random Access Channel)

8.6.2.2 Burst waveform generation

CSREQ-2321

The burst waveform generation shall be applied to the RTN_PSDU and shall be composed of a sequence of functional modules as represented in Figure 8-20: Return link burst waveform generation. The functional blocks shall be:

- Physical Layer Adaption
- Error Detection
- Base Band scrambling
- FEC Encoding, which includes the inner encoding and the bit interleaver
- Auxiliary channel generation
- Bit Mapping into Constellation
- Spreading
- Physical Layer Framing
- Base-band Pulse Shaping and Quadrature Modulation

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:115 of 228

Figure 8-20: Return link burst waveform generation

CSREQ-2640

The RTN Link bursts shall follow the frame format presented in the following figure:

Figure 8-21: RTN Link burst frame structure

CSREQ-6540

The RACH burst shall support the following configurations.

RACH Configuration ID	Chip rate (kchip/s)	SF length	Mod	Code rate	Data Word Size (bits) - BBFRAME
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	160 (TBC)	16	BPSK	1/3	512 (TBC)
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	160 (TBC)	4	BPSK	1/3	2048 (TBC)
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	160 (TBC)	4	BPSK	1/3	288 (TBC)

Table 8-18: Allowed RACH burst configurations

(Note: these configurations correspond to the Data Channel)

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 117 of 228	

8.6.2.3 Physical Layer Adaption

CSREQ-2661

The Physical Layer Adaption module shall perform:

- Interface with Layer 2
- Padding insertion
- RTN_DD (RTN Data Descriptor) insertion

CSREQ-2662

The input stream of the Physical Layer Adaption module shall be a RTN_PSDU and the output stream shall be a RTN_DD Header followed by a BB_DATAFIELD, as detailed in Figure 8-22.

Figure 8-22: Data format at the output of the RTN Physical Layer Adaption module

CSREQ-2660

A single RTN PSDU shall be mapped onto a single burst.

8.6.2.3.1 Interface with Layer 2

CSREQ-2650

The Physical Layer Adaption module shall map RTN_PSDU of 3 types of layer 2 entities (or protocols):

- RLE
- Protocol 2 TBD
- Protocol 3 TBD

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND			
DATE:	20/03/2012			
ISSUE:	Draft01	PAGE: 118 of 228		

CSREQ-2680

The RTN_PSDU size (in bytes) shall be variable in the range depending on the selected RACH configuration. The maximum RTN_PSDU size (Max. N_{RTN_PSDU}) shall be as follows:

RACH Configuration ID	Max. N _{RTN_PSDU} [Maximum PSDU size (bytes)]
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	58 bytes (TBC)
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	250 bytes (TBC)
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	30 bytes (TBC)

 Table 8-19: Maximum PSDU size

8.6.2.3.2 Padding insertion

CSREQ-2691

 $(N_{RTN_{BB}_{DFL}} - N_{RTN_{PSDU}})$ bytes shall be appended after the RTN_PSDU according to Figure 8-22. The contents of the padding bytes shall be "0x00".

8.6.2.3.3 RTN_DD (RTN Data Descriptor) insertion

CSREQ-2692

A fixed length header (RTN_DD) of N_{RTN_DD} = 2 bytes (bits I₀-I₁₅) shall be inserted in front of the RTN_BB_DATAFIELD according to Figure 8-22.

CSREQ-2690

The RTN_DD header shall contain the following fields:

Bits	Field	Field size	Description
l ₀	RTN_PSDU Size Flag	1 bit	It indicates if the PSDU Size is present in the RTN_DD header
I ₁	Alternate Descriptor Flag	1 bit	It indicates if the Alternate Descriptor is present in the RTN_DD header
l ₂ -l ₃	L2 Protocol Type	2 bits	It indicates the L2 protocol used in the RTN_PSDU
I ₄ -I ₁₁	Contents field	8 bits	It contains the PSDU size or the Alternate Descriptor (see CSREQ-6550)

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 ISSUE:
 Draft01
 PAGE: 119 of 228

CSREQ-6550

The mapping of RTN_PSDU Size Flag, the Alternate Descriptor Flag and the Contents field shall be as detailed in Table 8-6.

I₀ (RTN_PSDU Size Flag)	I ₁ (RTN Alternate Descriptor Flag)	I₄-I ₁₁ (RTN Contents Field)
1	0	"Contents" field is filled with the PSDU size, in bytes
0	1	"Contents" field is filled with the Alternate Descriptor
		Note: Alternate Descriptor field is reserved for future use
0	0	N.A
1	1	N.A

Table 8-21: Contents field mapping

CSREQ-2730

The Protocol Type shall indicate which L2 entity is the client of the burst. It is a 2-bit field coded as follows:

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 120 of 228

l ₂ l ₃ (RTN Protocol Type)	Description
00	Reserved
01	RLE
10	TBD
11	TBD

Table 8-22: RTN Link Protocol Type field mapping

8.6.2.4 Error detection (CRC-32)

CSREQ-2741

The RTN Error Detection module shall compute the CRC parity bits in order to detect erroneous packets in the receiver side and to provide a packet quality indicator.

CSREQ-2742

The input stream of the RTN Error Detection module shall be a RTN_DD header followed by a RTN_BB_DATAFIELD and the output stream shall be a RTN_PPDU (or a RTN_BBFRAME), as illustrated in Figure 8-24.

Figure 8-24: Data format at the output of the RTN Error Detection module

CSREQ-2740

The 32-bit CRC (RTN_CRC_32 field) shall be appended after the RTN_BB_DATAFIELD, as illustrated in Figure 8-24.

CSREQ-2750

The CRC_32 shall be computed over:

- The RTN_DD header
- The RTN_BB_DATAFIELD

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:121 of 228

CSREQ-2760

The content of the RTN_CRC_32 field shall be computed as it is described in **CSREQ-2030**, **CSREQ-2040** and **CSREQ-2041**.

8.6.2.5 Base-band scrambling

CSREQ-2911

The RTN Base-band scrambling module shall perform data randomisation in order to ensure adequate binary transitions.

CSREQ-2912

The input stream of the RTN Base-band scrambling module shall be a RTN_BBFRAME (or a RTN_PPDU) and the output stream shall be a RTN_S_BBFRAME (RTN Scrambled BBFRAME).

(Note: the length of the input and output data stream (RTN_BBFRAME and RTN_S _BBFRAME) is the same, as the Base-band scrambling does not add redundancy)

CSREQ-2910

The Base-band scrambling sequence shall be synchronous with the RTN_BBFRAME.

CSREQ-2920

The output stream (RTN_S_BBFRAME) shall be generated by the following feed-back shift register: TBD

8.6.2.6 FEC encoding

CSREQ-2781

The FEC Encoding module shall perform the following functions:

- Inner channel coding (TCC)
- Bit interleaving

CSREQ-2782

The input stream of the FEC encoding module shall be a RTN_S_BBFRAME and the output stream shall be a RTN_FECFRAME, as illustrated in the following figure.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 122 of 228

Figure 8-25: Output stream of the FEC Encoding

CSREQ-2780

The BBFRAME shall be encoded with 1/3 code rate using the inner coding described in section 8.6.2.6.1

8.6.2.6.1 Inner encoding (TCC)

CSREQ-2940

The Forward Error correction scheme on the return link shall be Turbo Convolutional Codes.

CSREQ-2960

The Turbo code architecture shall be a Parallel Concatenated Convolutional Code (PCCC) with two identical 16-state binary, recursive and systematic convolutional encoders and a Turbo code internal interleaver, as it is depicted in the following figure.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012DescriptionDescription

ISSUE: Draft01 **PAGE:** 123 of 228

(Note: y_2 , y_3 , y'_2 , and y'_3 are not used for the code rate 1/3)

Figure 8-26: PCCC 16-states binary architecture

The Turbo encoder output shall be computed according to the following procedure (code rate 1/3):

- 1. Both 16-state constituent encoders shall be initialised with 0 in all the shift registers before coding a block (initial state).
- 2. All switches shall be set in the A position.
- 3. The encoded data shall be generated by clocking the constituent encoders N_{RTN_S_BBFRAME} times. MSB of RTN_S_BBFRAME shall be inserted first in the TCC encoder. The constituent encoder outputs for each bit period k (k< N_{RTN_S_BBFRAME}) shall be the output sequence (k represents the):

$$x(k), y_1(k), y'_1(k)$$

- 4. Once the last input bit has been inserted in the constituent encoders (LSB of RTN_S_BBFRAME), the switches shall be set to position B.
- 5. Then the tail (trellis termination) bits are generated by clocking 4 times the constituent encoders. The tail bits shall be appended after the encoded information block. The tail bits are transmitted in the same order as in step 3 and shall be:

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:124 of 228

x(N_{RTN_S_}BBFRAME), y1(N_{RTN_S_}BBFRAME), y'1(N_{RTN_S_}BBFRAME), ..., x(N_{RTN_S_}BBFRAME+3), y1(N_{RTN_S_}BBFRAME+3), y'1(N_{RTN_S_}BBFRAME+3)

6. The transmitted sequence shall be:

x(0), y₁(0), y'₁(0), x(1), y₁(1), y'₁(1),, x(N_{RTN_S_BBFRAME-1}), y₁(N_{RTN_S_BBFRAME-1}), y'₁(N_{RTN_S_BBFRAME-1}), x(N_{RTN_S_BBFRAME}), y₁(N_{RTN_S_BBFRAME}), y'₁(N_{RTN_S_BBFRAME+3}), y'₁(

CSREQ-2970

The transfer function of the 16-state constituent code for shall be:

$$G(D) = \begin{bmatrix} 1 & \frac{n_0(D)}{d(D)} & \frac{n_1(D)}{d(D)} & \frac{n_2(D)}{d(D)} \end{bmatrix},$$

where

$$d(D) = 1 + D^{3} + D^{4}$$

$$n_{0}(D) = 1 + D + D^{3} + D^{4}$$

$$n_{1}(D) = 1 + D^{2} + D^{4}$$

$$n_{2}(D) = 1 + D + D^{2} + D^{3} + D^{4}$$

(Note: for code rate 1/3 only d(D) and $n_0(D)$ are required)

CSREQ-3010

The internal turbo interleaver shall be implemented as detailed in the algorithm provided in section 16.

CSREQ-6660

The TCC coding shall support the following RACH block sizes reported in the following table

RACH Configuration ID	Code rate	RTN_S_BBFRAME (bits)	Tail bits	RTN_FECFRAME (bits)
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	1/3	512 bits	12 bits	1548 bits
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	1/3	2048 bits	12 bits	6156 bits
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	1/3	288 bits	12 bits	876 bits

Table 8-23: RACH TCC coding parameters

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 125 of 228

8.6.2.6.2 Bit interleaving

CSREQ-3030

The output of the TCC encoder shall be bit interleaved using a block interleaver (row/column) with the parameters defined in the following table

RACH Configuration ID	RTN_FECFRAME size	Bit interleaver specification	
	(DItS)	N _{RTN}	M _{RTN}
RACH_SF ₁₆ _DB ₅₁₂	1548	36	43
RACH_SF ₄ _DB ₂₀₄₈	6156	36	171
RACH_SF ₄ _DB ₂₈₈	876	12	73
Note:			
 N stands for the number 	er of rows		

M stands for the number of columns

Table 8-24: RACH burst bit interleaver parameters

CSREQ-6670

The bit interleaver depth shall be 1 RTN_FECFRAME (1 Code Word)

CSREQ-6680

On the transmitter side, the encoded bits shall be serially written in column-wise and shall be serially read out row-wise. MSB of RTN_FECFRAME shall be written and read out first.

REFERENCE: ANTAR-B1-CP-TNO-2006-IND ındra 20/03/2012 DATE: **ISSUE:** Draft01 PAGE: 126 of 228 MSB of M_{RTN}-M_{RTN}-RTN FECFRAME Row 1 Read Row 1 N_{RTN} Write N_{RTN} LSB of RTN_ FECFRAME Row N Row N Column Column Column Column

Figure 8-27: Bit interleaving scheme

1

Μ

Μ

CSREQ-6690

On the receiver side, the encoded bits shall be serially written in row-wise and shall be serially read out column-wise. MSB of RTN_FECFRAME shall be written and read out first.

8.6.2.7 Auxiliary channel generation

1

CSREQ-6601

The Auxiliary Channel Generation module shall generate the Pilot symbols to support the channel estimation for coherent detection

CSREQ-6600

The output stream of the Auxiliary Channel Generation shall be RTN_AUXFRAME. The RTN_AUXFRAME shall consist of $N_{RTN_{PS}}$ known pilot symbols.

CSREQ-6610

The number of pilot symbols ($N_{RTN_{PS}}$) of the Auxiliary channel shall depend on the RTN burst configuration and shall be as reported in Table 8-25.

UNCLASSIFIED

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01 **PAGE:** 127 of 228

RACH Configuration ID	N _{RTN_PS} (symbols)	Pilot symbol sequence
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	1548 symbols (TBC)	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	6156 symbols (TBC)	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	876 symbols (TBC)	TBD

 Table 8-25: Number of Pilot symbols (N_{RTN_PS}) of the Auxiliary Channel for allowed RTN burst configurations

CSREQ-6611

The contents of the Auxiliary channel (RTN_AUXFRAME) shall be generated using the following ML PN generator: TBD

8.6.2.8 Bit mapping into constellation

CSREQ-6701

The bit mapping module shall perform the mapping of the incoming bits into symbols according to the specified constellation order.

CSREQ-6702

The input stream of the Bit mapping module shall be a RTN_FECFRAME and a RTN_AUXFRAME and the output stream shall be a RTN_DCH (Return Data Channel) and a RTN_ACH (Auxiliary Channel) respectively.

Both inputs (RTN_FECFRAME and RTN_AUXFRAME) are bit mapped independently.

Figure 8-28: Data format at the output of the Bit mapping module

CSREQ-6703

The RTN_FECFRAME and the RTN_AUXFRAME shall be bit mapped independently into BPSK modulation (η_{MOD} =1) according to the **CSREQ-6700**.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 128 of 228

CSREQ-6700

The bit mapping into BPSK constellation shall be compliant with Table 8-26.

One bit of the RTN_FECFRAME shall be mapped to a 1 BPSK symbol. One bit of the RTN_AUXFRAME shall be mapped to a 1 BPDK symbol.

Bits	Symbol
0	1
1	-1

Table 8-26: BPSK bit mapping

8.6.2.9 Spreading

CSREQ-6711

The Spreading module shall perform

- the channelization of both channels (Data and Auxiliary channel)
- the complex scrambling

CSREQ-6712

The input stream of the Spreading module shall be a RTN_DCH (I component) and a RTN_ACH (Q component) and the output stream a RTN_XFRAME (RTN complex FRAME).

CSREQ-6710

The spreading of RTN_CDH and RTN_ACH shall be applied as illustrated in the following figure and shall consist of two operations:

- 1. The channelization operation, which transforms every symbol into a number of chips, increasing the bandwidth of the signal ($C_{ch,d}$ and $C_{ch,c}$ channelization codes).
- 2. The scrambling operation, where a complex scrambling code is applied to the spread signal (C_{Scram} scrambling code)

CSREQ-6720

The RTN_CDH shall be spread to the chip rate by the channelization code $C_{ch,d}$ and the RTN_ACH shall be spread to the chip rate by the channelization code $C_{ch,c}$. The channelization codes used shall be OVSF codes following the specification described in section 8.6.2.9.1

CSREQ-6730

After the channelization, the Auxiliary part (RTN_ACH) shall be weighted by the gain factor β_2 =sqrt(0.1) (TBC)

CSREQ-6740

The stream of the real-valued chips on the I-branch (RTN_CDH) and Q-branch (RTN_ACH) shall be treated as a complex-valued stream of chips, being the RTN_CDH (I component) the real part and the RTN_ACH (Q component) the imaginary part.

CSREQ-6750

The complex-valued stream (I+jQ) shall be scrambled by the complex valued scrambling code C_{scramb} , (complex product). The scrambling code is specified in section 8.6.2.9.2

8.6.2.9.1 Channelization

CSREQ-6770

The channelization codes ($C_{ch,d}$, $C_{ch,c}$) shall be Orthogonal Variable Spreading Factor (OVSF) codes. The channelization codes shall be used to distinguish the RTN_CDH and the RTN_ACH.

CSREQ-6780

The OVSF codes shall be generated using the code tree of Figure 8-30.

Figure 8-30: Code-tree for generation of Orthogonal Variable Spreading Factor (OVSF) codes

Channelization codes are uniquely described as $C_{ch,SF,k}$, where SF is the spreading factor of the code and *k* is the code number, $0 \le k \le SF$ -1.

The generation method for the channelization code is defined as:

$$\begin{split} C_{ch,1,0} &= 1 \\ \begin{bmatrix} C_{ch,2,0} \\ C_{ch,2,1} \end{bmatrix} = \begin{bmatrix} C_{ch,1,0} & C_{ch,1,0} \\ C_{ch,2,1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ \begin{bmatrix} C_{ch,2(n+1),0} \\ C_{ch,2^{(n+1),1}} \\ C_{ch,2^{(n+1),2}} \\ \vdots \\ \vdots \\ C_{ch,2^{(n+1),3}} \\ \vdots \\ C_{ch,2^{(n+1),2(n+1)-2}} \\ C_{ch,2^{(n+1),2(n+1)-2}} \end{bmatrix} = \begin{bmatrix} C_{ch,2^n,0} & C_{ch,2^n,0} \\ C_{ch,2^n,0} & -C_{ch,2^n,0} \\ C_{ch,2^n,1} & C_{ch,2^n,1} \\ \vdots \\ \vdots \\ C_{ch,2^n,1} & -C_{ch,2^n,1} \\ \vdots \\ C_{ch,2^n,2^n-1} & -C_{ch,2^n,2^n-1} \\ C_{ch,2^n,2^n-1} & -C_{ch,2^n,2^n-1} \end{bmatrix}$$

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 131 of 228

CSREQ-6790

The RTN_DCH shall always be spread by the following channelization codes ($C_{ch,d}$), depending on the Burst Configuration ID. All the UT shall use the same channelization codes reported in Table 8-27.

Configuration ID	Channelization code length	Channelization code allocation (C _{ch,d})
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	16 chips	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	4 chips	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	4 chips	TBD

Table 8-27: Channelization code allocation for C_{ch,d}

CSREQ-6800

The RTN_ACH shall always be spread by the following channelization codes ($C_{ch,c}$), depending on the Burst Configuration ID. All the UT shall use the same channelization codes reported in Table 8-28.

Configuration ID	Channelization code length	Channelization code allocation (C _{ch,c})
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	16 chips	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	4 chips	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	4 chips	TBD

Table 8-28: Channelization code allocation for C_{ch,c}

Note: the RTN_ACH always use the same SF as the RTN_DCH

8.6.2.9.2 Complex Scrambling

CSREQ-6810

The scrambling code shall be a complex-valued sequence.

CSREQ-6820

The scrambling code shall be generated according to the following procedure: TBD.

CSREQ-6830

All the UT shall use the same scrambling codes reported in Table 8-29.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

 Issue:
 Draft01
 Page: 132 of 228

RACH Configuration ID	Scrambling code allocation (C _{scramb})
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	TBD
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	TBD

Table 8-29: Scrambling code allocation

CSREQ-6840

The scrambling sequence shall be truncated to the data channel size in chips. The size of the scrambling sequence shall be:

RACH Configuration ID	Scrambling code length (chips)
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	24,768
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	24,624
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	3,504

 Table 8-30: Scrambling code length

8.6.2.10 Physical layer framing

CSREQ-2801

The Physical layer framing module shall perform the RTN_PREAMBLE insertion.

CSREQ-2802

The input stream of the Physical Layer Framing sub-system shall be a RTN_XFRAME and the output a RTN_PLFRAME.

CSREQ-6570

The PREAMBLE shall consist of N_{RTN_P} known complex symbols. The preamble length shall be as reported in Table 8-31.

RACH Configuration ID	N _{pre} (symbols)
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	96 symbols (TBC)
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	96 symbols (TBC)
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	96 symbols (TBC)

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:133 of 228

Table 8-31: RACH Preamble length (in symbols)

CSREQ-6590

The preamble sequence shall be spread according to the following procedure: TBD

8.6.2.11 Base-band pulse shaping and quadrature modulation

CSREQ-3070

I and Q signals shall be shaped using a Square Root Raised Cosine with a roll-off factor α =0.2.

CSREQ-3080

The baseband SRRC filter shall have a theoretical function defined by the following expression.

$$H(f) = 1 \qquad \text{for } |f| < f_N(1-\alpha)$$

$$H(f) = \left\{ \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2f_N} \left[\frac{f_N - |f|}{\alpha} \right] \right\}^{\frac{1}{2}} \qquad \text{for } f_N(1-\alpha)$$

$$H(f) = 0 \text{ for } |f| > f_N(1+\alpha),$$

where $f_N = \frac{R_s}{2}$ is the Nyquist frequency and α is the roll-off factor.

CSREQ-3090

The quadrature modulation shall be performed by multiplying the In-phase component (I) by $\cos(2\pi f_0 t)$ and the quadrature component (Q) by $-\sin(2\pi f_0 t)$. The resulting I and Q components shall be added to conform the modulator output signal.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 134 of 228

Figure 8-31: Return link modulation

8.6.3 Splitting traffic policies

CSREQ-7270

The messages shall be mapped to the RACH burst Configurations based on message service requirements as detailed in Table 8-32 (TBC).

RACH Configuration ID	Service	Splitting policy
$RACH_CR_{160_SF_{16_DB_{512}}}$	Data	All except the data messages transmitted through RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈ (TBC)
$RACH_CR_{160_}SF_{4_}DB_{2048}$	Data	TD95 \leq 2.4 & Message size \geq 1000 bytes (TBC)
$RACH_CR_{160}_SF_4_DB_{288}$	Voice	

Table 8-32: Mapping between services and RACH bursts Configuration

(Note: this requirement has been included to provide a evidence of a preliminary mapping between messages and RACH bursts configurations. In a future, this requirement will be updated mapping CoS and RACH burst configurations.)

(Note: This requirement will also address mapping of L2 signalling messages to RACH burst configurations).

9. CONTROL PLANE SPECIFICATION

9.1 Control plane description

The Control plane deals with real-time control functionality that is required in order for the communication system to function including:

- terminal registration
- handover
- multicast control
- synchronisation
- radio resource management
- redundancy
- security control

Refer to section 5.2 for details on the control plane.

9.2 Control procedures

9.2.1 Terminal registration procedure (log-on)

(To be revised in B2)

9.2.1.1 Terminal logon-on procedure

CSREQ-3100

The GS shall broadcast the System Information tables periodically to allow UTs to logon, containing at least the following information:

- A description of the structuring of the communication
- a description of the division of the communication resources
- a table that specifies the content and characteristics (e.g. symbol rate, code rate, etc.) of each available communication resource

CSREQ-3110

The UT shall be capable of listening to the System Information tables broadcasted by the GS.

CSREQ-3120

Once the System Information tables have been correctly received, the UT shall perform an initial synchronisation procedure.

CSREQ-3130

The UT shall send a logon request burst through the RACH channel, including the following parameters:

- L2 address address as identifier of the UT
- CS capabilities (e.g. support for ACM, frequency range admitted by the UT, etc.) TBC
- L3 capabilities (e.g., preferred address configuration method, support of ROHC compression, etc.) TBC
- Application level capabilities (voice support, support for ATC services only or AOC services only, etc.) TBC

CSREQ-3135

[Placeholder for logon confirm message].

CSREQ-3140

The UT shall re-attempt to logon for TBD times if no confirmation is received after an internal timeout expires.

CSREQ-3150

Upon GS terminal registration internal checks (e.g. admission analysis based on the system status), the GS shall notify the UT of the assigned GES by a logon response.

CSREQ-6250

The CS shall not perform authentication of UTs during the log-on procedure.

CSREQ-6255 (TBC)

The CS shall support a logon INFO message to inform backup GS Element about logged on UTs.

9.2.1.2 Terminal log-off procedure

CSREQ-3160

The UT shall be able to forward log-off messages to the GS.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:137 of 228

CSREQ-3180

Upon the reception of a valid log-off message, the GS shall stop accounting procedures for that aircraft and release any resource reservation.

CSREQ-3190

The GS shall be able to forward log-off confirmation messages to the UT as a response to a log-off message.

CSREQ-3210

The GS shall be able to trigger the log-off of a UT (TBC). The UT shall log-off at the request of the GS.

Note: This requirement needs feedback from the safety case.

9.2.2 Handover procedures

(To be revised for B2)

Note: This topic has not been addressed during the BP, only from the synchro point of view. This section will be updated at Phase B2.

9.2.2.1 Handover sequence

9.2.2.1.1 Handover detection

CSREQ-3220

The handover detection process shall be able to rely only on signal measurements.

CSREQ-3230

The UT shall constantly monitor the signal strength of neighbour/alternative channels and compare the measurements with its current link quality in order to detect potential HO candidates.

CSREQ-3225

The UT shall use a second receiver specifically devoted to handover purposes (handover detection and support to handover execution).

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:138 of 228

CSREQ-3240

The handover detection process shall implement a hysteresis cycle to avoid continuous handovers on coverage transition areas.

CSREQ-3250

The UT shall send a HO_RECOMMENDATION message to the GS including the following information:

- Signal power measurements (identifying current and neighbour carriers)
- Position information (if available) (TBC)
- Administrative, political and business related preferences

CSREQ-3260

The GS shall be able to receive and process HO_RECOMMENDATION messages from UTs or triggered by other GS subsystems (e.g., management module, redundancy module).

9.2.2.1.2 Handover decision

CSREQ-3270

After overall system status analysis, the GS shall send a HO_COMMAND message to the UT including at least the following information:

- Reference frequencies of transmission and reception
- GES to be connected to

CSREQ-3280

If a handover is determined to a different satellite and information of overall system status of candidate GSs is available, the previous GS shall send to the UT information about the new GS that shall be in charge of the new connection.

CSREQ-3290

If a handover to a different satellite is being performed and the HO request has been accepted by the new GS, the UT shall send a HO_COMMAND to the previous GS to inform it about the HO status.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:139 of 228

9.2.2.1.3 Handover execution

CSREQ-3300

A UT shall be capable of receiving two sets of FWD link MF-TDMA carriers (associated to different beams or to different satellites).

CSREQ-3310

A UT shall be capable of transmitting not simultaneously to different sets of RTN link A-CDMA carriers.

CSREQ-3320

The GS shall give priority to terminals in a HO process with a risk of signal loss (beam and satellite HOs).

9.2.2.2 Handover procedure specification

Note: The term "multicast responsible" refers to the GS element in charge of forwarding a multicast group over a certain satellite link beam.

9.2.2.2.1 Procedure "Satellite Change. Same LAN"

CSREQ-3330

Upon HO recommendation, the previous GS shall send information of the new GS to the UT.

CSREQ-3340

Upon the reception of new GS information, the UT shall relay the recommendation to the new GS.

CSREQ-3350

At the reception of a HO recommendation at the new GS, the previous GS shall issue a HO COMMAND to the UT, which shall relay it also to other affected GS elements, if required.

CSREQ-3360

After the HO COMMAND, the UT shall perform an initial synchronisation procedure and send a HO COMMAND to the new GES, maintaining the communication with the previous GES.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:140 of 228

CSREQ-3370

In parallel with the initial synchronisation procedure with the new GS, the UT shall request a Multicast join to the new multicast responsible and leave the previous multicast responsible before the previous connection is closed.

CSREQ-3380

While performing the HO, in case of pending traffic and imminent previous link loss or timeout, the UT shall perform the following:

• For the forward link, the UT shall inform of imminent connection loss to the previous GES, which shall send pending traffic to the new GES for relay to the UT.

CSREQ-3390

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to both NCCs.

9.2.2.2.2 Procedure "Satellite Change. Different LAN"

CSREQ-3400

Upon HO recommendation, the previous GS shall send information of the new GS to the UT.

CSREQ-3410

Upon the reception of new GS information, the UT shall relay the recommendation to the new GS.

CSREQ-3420

At the reception of a HO recommendation at the new GS, the previous GS shall issue a HO COMMAND to the UT, which shall relay it also to other affected GS elements, if required.

CSREQ-3430

After the HO COMMAND, the UT shall perform an initial synchronisation procedure with the new GS and send a HO COMMAND to the new GES, maintaining the communication with the previous GES.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:141 of 228

CSREQ-3440

In parallel with the initial synchronisation procedure with the new GS, the UT shall request a Multicast join to the new multicast responsible and leave the previous multicast responsible before the previous connection is closed.

CSREQ-3450

After the synchronisation procedure, the L3 network update procedure shall be executed between the new GES and the UT while communication is initially maintained with both GES.

CSREQ-3460

While performing the HO, in case of pending traffic and imminent previous link loss or timeout, the UT shall perform the following:

• For the forward link, the UT shall inform of imminent connection loss to the previous GES, which shall send pending traffic to the new GES for relay to the UT.

CSREQ-3470

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to both NCCs.

9.2.2.2.3 Procedure "SSP Change"

CSREQ-3480

Upon HO recommendation, the previous GS shall send information of the new GS to the UT.

CSREQ-3490

Upon the reception of new GS information, the UT shall perform the LOGON to the new GS, which shall issue a HO COMMAND to the UT. The UT shall relay it also to the previous GS.

CSREQ-3500

Upon the relay of the HO COMMAND to the previous GS from the UT, the UT shall perform the initial synchronisation with the new GS, send a HO COMMAND to the new GES and perform the LOGON NEGOTIATION with the new GS.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:142 of 228

CSREQ-3510

In parallel with the initial synchronisation procedure with the new GS, the UT shall request a Multicast join to the new multicast responsible and leave the previous multicast responsible before the previous connection is closed.

CSREQ-3520

After the synchronisation procedure, the L3 network update procedure shall be executed between the new GES and the UT while communication is initially maintained with both GES.

CSREQ-3530

While performing the HO, in case of pending traffic and imminent previous link loss or timeout, the UT shall perform the following:

• For the forward link, the UT shall inform of imminent connection loss to the previous GES, which shall send pending traffic to the new GES for relay to the UT.

CSREQ-3540

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to both GSs.

9.2.2.2.4 Procedure "Beam Change. Same GES"

CSREQ-3550

Upon HO recommendation, the GS shall issue a HO COMMAND to the UT, which shall relay it also to other affected GS elements, if required.

CSREQ-3560

After the HO COMMAND, the UT shall perform the synchronisation for the new beam while communication is maintained with both links.

CSREQ-3570

In parallel with the initial synchronisation procedure, the UT shall request a Multicast join to the new multicast responsible and leave the previous multicast responsible before the previous connection is closed.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 143 of 228

CSREQ-3580

While performing the HO, in case of pending traffic and imminent previous link loss or timeout, the UT shall perform the following:

• For the forward link, the UT shall inform of imminent connection loss to the GES, which shall send pending traffic through the new link (keeping two sessions).

CSREQ-3590

When buffers are empty, either the UT or the GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to the NCC.

9.2.2.2.5 Procedure "Beam Change. Same LAN"

CSREQ-3600

Upon HO recommendation, the GS shall issue a HO COMMAND to the UT, which shall relay it also to other affected GS elements, if required.

CSREQ-3610

After HO COMMAND, the UT shall perform the synchronisation for the new beam and shall issue a HO COMMAND to the new GES while communication is maintained with both links.

CSREQ-3620

In parallel with the initial synchronisation procedure, the UT shall request a Multicast join to the new multicast responsible and leave the previous multicast responsible before the previous connection is closed.

CSREQ-3630

While performing the HO, in case of pending traffic and imminent previous link loss or timeout, the UT shall perform the following:

• For the forward link, the UT shall inform of imminent connection loss to the previous GES, which shall send pending traffic to the new GES for relay to the UT.

CSREQ-3640

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to the NCC.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 144 of 228

9.2.2.2.6 Procedure "Beam Change. Different LAN"

CSREQ-3650

Upon HO recommendation, the GS shall issue a HO COMMAND to the UT, which shall relay it also to other affected GS elements, if required.

CSREQ-3660

After the HO COMMAND, the UT shall perform the synchronisation for the new beam and issue a HO COMMAND to the new GES while communication is maintained with both links.

CSREQ-3670

In parallel with the initial synchronisation procedure, the UT shall request a Multicast join to the new multicast responsible and leave the previous multicast responsible before the previous connection is closed.

CSREQ-3680

After the synchronisation procedure, the L3 network update procedure shall be executed between the new GES and the UT while communication is initially maintained with both GES.

CSREQ-3690

While performing the HO, in case of pending traffic and imminent previous link loss or timeout, the UT shall perform the following:

• For the forward link, the UT shall inform of imminent connection loss to the previous GES, which shall send pending traffic to the new GES for relay to the UT.

CSREQ-3700

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to the NCC.

9.2.2.2.7 Procedure "GES Change. Same LAN"

CSREQ-3710

Upon HO recommendation, the GS shall issue a HO COMMAND to the UT, which shall relay it also to the previous and new GES (if required) while communication is maintained with both GES.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDate:20/03/2012Issue:Draft01Page:145 of 228

CSREQ-3720

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to the NCC.

9.2.2.2.8 Procedure "GES Change. Different LAN"

CSREQ-3730

Upon HO recommendation, the GS shall issue a HO COMMAND to the UT, which shall relay it also to the previous and new GES, if required.

CSREQ-3740

After the HO COMMAND, the L3 network update procedure shall be executed between the new GES and the UT while communication is initially maintained with both GES.

CSREQ-3750

When buffers are empty, either the UT or the previous GES shall issue a CONNECTION CLOSE to the other entity. When confirmed, a HO FINISHED shall be sent to the NCC.

9.2.2.2.9 Procedure "Bulk Handover"

[Placeholder. To be completed in B2]

9.2.3 Multicast control procedures

(To be revised in B2)

9.2.3.1 Overview of multicast membership management methods

Three different types of memberships are defined: static, GES-based and dynamic memberships for the CS.

- The concept of static group memberships involves that an aircraft is a member of a predefined set of multicast groups. The membership management scheme does not allow change of group subscriptions during the flight.
- The concept of dynamic memberships entails that hosts would be capable of joining and leaving multicast groups during the flight. Thus, subscriptions to multicast groups would change dynamically.
- GES-based memberships involves that the GES, and not the UT, subscribe to multicast groups and act as multicast members (or listeners). Then, the GES broadcasts all the multicast data received over the beam. This option is rather static and may fit with multicast groups linked with geographical areas.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:146 of 228

At this point, as no information about the expected characteristics of multicast services and applications is provided, it is proposed to retain all the membership methods.

CSREQ-3760

The following membership management methods shall be supported:

- Static group membership
- GES-based group membership
- Dynamic group membership

Note: This requirement has been considered as no information was available about the detailed nature of multicast services. Hence, it is not possible to select the most suitable membership management method at this point.

9.2.3.2 Multicast membership management procedures

CSREQ-3770

Mechanisms such as re-broadcasting and answer suppression shall be supported in order to minimise the amount of resources used for multicast signalling in the satellite.

Note: How to perform these techniques will be indicated by the ANTARES-GMP protocol and how to implement and configure timers will be stated in the guidelines.

9.2.3.3 Multicast forwarding procedures

Dynamic selective forwarding is proposed for the CS.

CSREQ-3780

A CS-compliant system should be able to forward multicast traffic only over those specific beams with active members (if this information is available).

9.2.4 Network synchronisation procedures

In this section the following concepts are used as follows:

- Feeder-to-Feeder links: GS-Satellite-GS fixed links operating at Ku, Ka or C band.
- Satellite ATM transceiver: satellite transceivers from/to Ku, Ka or C band to/from L band.
- ATM links: GS-Satellite-UT or UT-Satellite-GS links that go through Satellite ATM transceivers.

9.2.4.1 General synchronisation aspects

CSREQ-3790

The NCC reference clock long term instability shall be better than 0.01 ppm per year.

CSREQ-3800

The GES reference clock long term instability shall be better than 0.01 ppm per year.

CSREQ-3810

The Satellite reference clock long term instability shall be better than 0.05 ppm over a period of 15 years.

CSREQ-6860

The UT reference clock long term instability shall be better than 1 ppm per year.

CSREQ-3820

The ATM transceivers belonging to the same satellite shall use the same reference clock.

CSREQ-6880

UT and GS elements shall guarantee operate under significant UT movement:

- UT speed up to Mach 2.5, i.e. up to 850 m/s at nominal atmospheric conditions at sea level
- UT acceleration up to 50 m/s²

UT angular velocity up to 3.33, 1.67 and 2 % (roll, pitch and yaw)

CSREQ-6260

All GS elements shall compensate the Feeder link Doppler Effect with a normalised residual error lower than 10⁻³ by:

- Computing the Doppler Effect from
 - GS element location
 - Satellite location and speed derived from satellite ephemerides
 - Nominal carrier and symbol frequencies
- Compensating Feeder link Doppler Effect on
 - Transmitter frequency and time.
 - Receiver frequency and time

CSREQ-3860

The NCC may estimate the satellite clock error and distribute it to all associated GS elements.

CSREQ-6270

All GS elements shall compensate the satellite translation error affecting all ATM transceivers by:

- Receiving the estimated satellite clock error distributed by the NCC (if available) or estimating it.
- Computing the satellite translation error affecting each ATM transceiver they are transmitting to or receiving from.
- Compensating the satellite translation error on all transmitted and received carriers.

9.2.4.2 Forward Link synchronisation

CSREQ-3830

The maximum difference between the delays introduced by any satellite ATM transceivers shall be low enough in order not to impact the forward link time synchronisation:

• Maximum delay difference lower than 1% of the symbol period in the forward link.

CSREQ-3870

Forward link initial synchronisation and synchronisation maintenance procedures shall be implemented

• either by means of Feeder-to-Feeder links,

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:149 of 228

• or through the Forward Link Carrier.

CSREQ-3840

The NCC shall distribute to all GS elements the Network Clock Reference (NCR)

- either by broadcasting NCR packets through the FCH physical channel, if the forward link network synchronisation is implemented through ATM links, i.e. the Forward Link Carrier;
- or by broadcasting NCR packets (or any alternative time stamp) through specific channels, if the forward link network synchronisation is implemented through Feeder-to-Feeder links.

CSREQ-3841

The Network Clock Reference shall have a frequency of 27 MHz.

CSREQ-3842

The NCR packet shall contain the value of a 40-bit counter provided in tics of the Network Clock Reference. The value shall correspond to the time at which the last preamble symbol of the FCH burst containing the NCR packet is transmitted.

CSREQ-3850

NCR packets shall be inserted with a periodicity that guarantees a proper recovery of the NCR to be used as a system time reference by any GS element.

• The minimum NCR packets periodicity shall be 2 packet/s.

CSREQ-6890

GS elements shall recover the system time reference from the processing of NCR packets (or any alternative time stamp). An NCR loop shall be implemented to locally recover the system NCR.

CSREQ-6900

Forward link initial synchronisation and synchronisation maintenance procedures shall be implemented

- either by means of GS elements auto-synchronisation through reception of their own transmission;
- or by means of a remote closed loop between all GS elements and the NCC.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:150 of 228

CSREQ-3875

If forward link network synchronisation procedures are implemented through Feeder-to-Feeder links, Feeder-to-Feeder and ATM transceivers shall belong to the same satellite.

CSREQ-3880

If forward link network synchronisation procedures are implemented through Feeder-to-Feeder links, the Satellite Feeder-to-Feeder and ATM transceivers shall use the same reference clock.

CSREQ-3890

If forward link network synchronisation procedures are implemented through Feeder-to-Feeder links, the maximum difference between the delays introduced by any satellite Feeder-to-Feeder and ATM transceivers shall be low enough in order not to impact the forward link time synchronisation:

• Maximum delay difference lower than 1% of the symbol period in the forward link.

CSREQ-6290

If forward link network synchronisation procedures are implemented through the Forward Link Carrier, GS elements shall be equipped with an L-band RF front-end (reception in L-band, apart from Ku, Ka or C-band, is required).

CSREQ-3900

The forward link network synchronisation maintenance procedure shall guarantee that GS transmissions to the Forward Link Carrier at the satellite front-end are

- Synchronised in time: maximum time error lower than half the guard time.
- Synchronised in carrier frequency: maximum frequency error lower than 10 Hz.
- Power balanced: uplink fades shall be compensated in order to guarantee a maximum power unbalance of 2 (TBC) dB.

CSREQ-3910

If forward link network synchronisation procedures are implemented through Feeder-to-Feeder links, GS elements shall not transmit any bursts to the Forward Link Carrier until the forward link synchronisation maintenance stage is reached.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 151 of 228

CSREQ-3920

If forward link network synchronisation procedures are implemented through Feeder-to-Feeder links, GS elements shall stop transmission to the Forward Link Carrier if synchronisation is lost. Transmission shall not be allowed until the forward link synchronisation is recovered.

9.2.4.3 Return Link synchronisation

The return link synchronisation procedures are depicted in Figure 9-1 and Figure 9-2 and covered in the requirements in subsequent sections.

Figure 9-1: Return link synchronisation procedure (FLC Reception and UT Network Registration)

9.2.4.3.1 UT Forward link carrier reception

CSREQ-3930

The UT shall be able to detect and demodulate Forward Link Carrier bursts affected by significant carrier frequency offsets. The sources of carrier frequency error are:

- GS (NCC or GES) reference clock instability
- Satellite reference clock instability (residual error after the compensation implemented by GS elements – CSREQ-6270)
- UT reference clock instability

- Satellite motion (residual error after the Feeder link Doppler compensation implemented by GS elements CSREQ-6260)
- UT motion

The maximum carrier frequency offsets are:

- 6.5 kHz for GEO constellations (Feeder link operation in Ku-band is assumed)
- 22.5 kHz for MEO constellations (Feeder link operation in C-band is assumed)
- 35 kHz for HEO constellations (Feeder link operation in Ka-band is assumed)

CSREQ-3940

The UT shall be able to detect and demodulate Forward Link Carrier bursts affected by significant time drifts. The sources of time drifts are:

- GS (NCC or GES) reference clock instability
- UT reference clock instability
- Satellite motion (residual error after the Feeder link Doppler compensation implemented by GS elements CSREQ-6260)
- UT motion

The maximum time drifts are:

- 3.9 us/s for GEO constellations (Feeder link operation in Ku-band is assumed)
- 14.2 us/s for MEO constellations (Feeder link operation in C-band is assumed)
- 21.2 us/s for HEO constellations (Feeder link operation in Ka-band is assumed)

CSREQ-3950

The UT shall be able to detect and demodulate Forward Link Carrier bursts affected by significant carrier frequency drifts. The sources of carrier frequency drifts are:

- Satellite acceleration (residual error after the Feeder link Doppler compensation implemented by GS elements – CSREQ-6260)
- UT acceleration and angular movement

The maximum carrier frequency drift is 350 Hz/s.

CSREQ-3960

The UT shall be able to detect and demodulate Forward Link Carrier bursts affected by significant time drift variations. The sources of time drift variations are:

• Satellite acceleration (residual error after the Feeder link Doppler compensation implemented by GS elements – CSREQ-6260)

• UT acceleration and angular movement

The maximum time drift variation is 0.22 us/s^2 .

9.2.4.3.2 UT network registration procedure

CSREQ-4000

The UT shall implement a transmitter Doppler pre-compensation mechanism aimed at:

- Minimising the initial frequency errors in the logon request bursts (first access to the system)
- Estimating and compensating the Doppler dynamics to reduce synchronisation errors

CSREQ-4005

The UT transmitter Doppler pre-compensation mechanism shall be based on the receiver carrier frequency offsets estimated by the UT demodulator upon reception of the Forward Link Carrier.

CSREQ-6910

The UT shall initiate the network registration procedure by means of a logon request sent through a RACH burst.

CSREQ-4010

The UT shall guarantee that RACH bursts implementing a logon request are received at the GS in the appropriate contention channel with a carrier frequency error lower than half the RACH guard band (see CSREQ-0980).

CSREQ-4025

The UT shall guarantee that RACH bursts implementing a logon request, once received at the GS, are affected by a maximum carrier frequency drift of 50 Hz/s.

CSREQ-4030

The UT shall guarantee that RACH bursts implementing a logon request, once received at the GS, are affected by a time drift during the burst duration lower than $T_c/8$, being T_c the chip period.

CSREQ-4040

Upon reception of a RACH burst with a UT logon request, the GS shall:

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:154 of 228

- Estimate the carrier frequency error and compute the corresponding synchronisation correction.
- Send to the UT the required synchronisation correction through the Forward Link Carrier (SYNC correction message).

CSREQ-6920

Upon reception of a synchronisation correction (SYNC correction message) through the Forward Link Carrier after a logon request, the UT shall adjust its transmitter accordingly.

CSREQ-6930

The UT shall restart the network registration procedure if no answer is received after an internal timeout (*RACH_response_timeout*) expires. *RACH_response_timeout* = TBD.

Blue procedures are optional

2 – SYNC correction is sent because the frequency error is higher than Max_freq_error.

5 – SYNC correction is not sent because the frequency error is lower than Max_freq_error.

7 - SYNC correction is sent for the k-th RACH burst but not for the k+1-th RACH burst because T1 is shorter than Sync_corr_timeout.

Figure 9-2: Return link synchronisation procedure (Steady state)

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:155 of 228

CSREQ-4115

The UT shall guarantee that RACH bursts, once received at the GS, are affected by a maximum carrier frequency drift of 50 Hz/s.

CSREQ-4120

The UT shall guarantee that RACH bursts, once received at the GS, are affected by a time drift during the burst duration lower than $T_c/8$, being T_c the chip period.

CSREQ-4130

The UT shall adjust its transmitter according to

- the corrections received through the Forward Link Carrier (SYNC correction message),
- the corrections computed locally by the transmitter Doppler pre-compensation mechanism, which is focussed on compensating Doppler dynamics.

CSREQ-4135

The GS shall be able to receive RACH bursts with a maximum carrier frequency error of half the RACH guard band (see CSREQ-0980).

CSREQ-4140 (Optional)

Upon reception of a RACH burst, the GS shall:

- Estimate the carrier frequency error and compute the corresponding synchronisation correction.
- If required, send to the UT the required synchronisation correction, through the Forward Link Carrier (SYNC correction message).

CSREQ-4160 (Applicable only if CSREQ-4140 is implemented)

Upon reception of a new RACH burst of a given UT, the GS shall only send a synchronisation correction if the following conditions are met at the same time:

- The carrier frequency error is higher than a certain threshold *Max_freq_error*, where *Max_freq_error* = RACH guard band / 8.
- The time elapsed since the last correction generated (to the same UT) is longer than *Sync_corr_timeout*, where *Sync_corr_timeout* = 300 ms + 2 x (Round Trip Time).

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:156 of 228

CSREQ-4170

The UT shall interrupt transmissions in any of the following circumstances:

- When required to do so by the GS.
- When the Forward Link Carrier is lost, i.e. no FCH bursts are received for FLC_loss_timeout seconds; FLC_loss_timeout = 2 (TBC) seconds.

9.2.5 ACM procedures

9.2.5.1 Forward link general requirements

CSREQ-5590

The user plane shall support adaptive waveforms (code rate and modulation order) on the Forward link. The following MODCODs shall be supported:

- QPSK 1/3, 1/2, 2/3
- 8-PSK 1/2, 2/3
- 16-APSK 2/3

(Note: in the future, the list of supported MODCODs can be expanded if deemed necessary (e.g. by including robust MODCODs)

CSREQ-5600

The GS shall be able to change the modulation and coding rate of the packets it transmits towards the different UTs.

CSREQ-6940

The UT shall implement two mechanisms to adapt the coding and modulation scheme used by the GS to communicate with it:

- A Fast ACM mechanism, which is used to react in the case of fast degradation of the link due to banking situation. A fast mechanism is defined as the mechanism that acts in a time window of less than TBD seconds.
- Slow ACM mechanism, which is used to better adapt the coding and modulation to slow variation of the propagation channel. A slow mechanism is defined as the mechanism that acts in a time window higher than TBD seconds.

CSREQ-6950

The Fast ACM mechanism shall prevail in front of the Slow ACM mechanism.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:157 of 228

CSREQ-6960

At the UT power up, the GS shall use the most robust MODCOD to communicate with the UT.

9.2.5.2 Fast ACM mechanism

(To be revised in B2)

CSREQ-6970

The Fast ACM mechanism shall be based on monitoring the PER³ for each MODCOD of the burst received in the FWD Link Carriers to detect fast link degradations.

CSREQ-6980

In the case that the Fast ACM mechanism detects fast signal degradation, the MODCOD shall be switched to the most robust one.

CSREQ-6990

The UT shall continuously measure the PER of all the bursts transmitted with different MODCODs able to be received in its assigned FLC.

CSREQ-7000

The PER monitoring performance for the Fast ACM mechanism shall guarantees that the PER will not be worse than 10⁻³ (TBC) for a time window longer than TBD.

CSREQ-7030

Based on the PER monitoring, the UT

- shall detect negative banking situation to trigger a switch of MODCOD to the most robust one to reduce PER during manoeuvre situations.
- shall detect positive banking situation to prevent misinterpreting a degradation of the SNIR when the aircraft recover normal non-banking attitude after manoeuvre.

Note: the terms negative and positive banking refer to (see also the following figure):

- Negative banking: situation where the received signal strength improves rapidly during the manoeuvre.
- Positive banking: situation where the received signal strength deteriorates rapidly during the manoeuvre.

³ The PER is computed as the number of PPDU received erroneous divided by the total number of received PPDU.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 158 of 228

Figure 9-3: Aircraft received signal variation due to antenna lobe pointing resulting from banking manoeuvres

CSREQ-7050

When the monitored PER exceeds the *PER_fast_Thr* threshold (10⁻¹ TBC), the UT shall indicate to the GS that the most robust MODCOD shall be used.

CSREQ-7060

When a banking condition is detected (the monitored PER exceeds the *PER_fast_Thr* threshod), the UT shall initiate a timer (*Banking_timer*) to be used as a watchodog for banking termination detection.

The *Banking_timer* can be set to 90 (TBC) seconds.

CSREQ-7080

When the banking termination is detected (the monitored PER is less than *PER_fast_Thr* threshold again or if *Banking_timer* expires), the UT shall re-start the Slow ACM mechanism as it were at the power up stage.

CSREQ-7320

In order to prevent rapid switch back and forth between slow and fast mechanism, an Hysteresis mechanism shall be put in place.

9.2.5.3 Slow ACM mechanism

CSREQ-7090

The Slow ACM mechanism shall be based on monitoring the PER for each MODCOD of the burst received in the FWD Link Carriers.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:159 of 228

CSREQ-7120

For a given MODCOD, the threshold shall be unique over the coverage area.

CSREQ-7330

The PER monitoring performance for the Slow ACM mechanism shall guarantees that the PER will not be worse than 10⁻³ (TBC) for a time window of TBD seconds.

CSREQ-7140

The UT shall monitor the PER for each MODCOD and for each GES using its assigned forward link carrier.

CSREQ-7160

The MODCOD selection mechanism shall be as follows:

- MODCOD downgrade: when the monitored PER for the current MODCOD increases above the PER threshold, the UT shall request the GES to send further packets with the next more robust MODCOD available on the forward link.
- MODCOD upgrade: when the PER for the next less robust MODCOD decreases below the PER threshold, the UT shall request the GES to send further packets with the next less robust MODCOD available on the forward link.

CSREQ-7170

In order to prevent rapid switch back and forth between 2 MODCOD, a Hysteresis mechanism shall be put in place.

CSREQ-7180

The GS shall ensure that all the MODCODs used by all the UT assigned to a FLC and the next less robust MODCOD are transmitted in a regular way. The minimum periodicity shall be TBD seconds.

(Note: for instance, if the less robust MODCOD in a FLC is MODCOD3, the GS shall ensure that MODCOD1, MODCOD2, MODCOD3 and MODCOD4 are transmitted in a regular way)

CSREQ-7190

When banking condition is detected (Fast ACM mechanism), the Slow ACM mechanism is disabled.

9.2.6 Radio resource management procedures

This section addresses:

• Congestion of the RACH (data and signalling)

9.2.6.1 Congestion control

The purpose of congestion control (CC) mechanisms is to control the amount of traffic entering in the communications network in order to avoid a collapse caused by oversubscription of either processing abilities or link capabilities of the networks and, furthermore, to ensure network stability, throughput efficiency and a fair allocation of resources.

CC mechanisms are based on A-CDMA channel noise rise measurements by the GS receiver. The problem is the satellite propagation delay, since actions enforced by the CC to the terminals arrive one full RTT later (540 ms).

Meaning of congestion control parameters indicated in this section is defined in section 8.6.1.1 (CSREQ-6470) and section 8.6.1.2 (CSREQ-6530)

9.2.6.1.1 Return Link congestion control protocol for data channel

CSREQ-4280

The UT shall support the congestion control mechanism indicated by the FLC through a CC_CONFIG message, with the following parameters for each supported CoS:

Congestion control mechanism	Parameter
	tx_backoff
Backoff	Persistence
	Timeout margin (TBC)

Table 9-1: Congestion control signalling message (CC_CONFIG msg)

Note: Exact format of the CC_CONFIG message will be defined in B2.

CSREQ-4282

The GS shall set congestion control parameters included in the CC_CONFIG message adaptively according to the system load status (low traffic, medium traffic, high traffic, congested).

CSREQ-4284

The system load status shall be estimated based on the measured noise rise and its evolution (details TBD).

CSREQ-4286

Congestion control parameters shall be set as follows according to load status:

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:161 of 228

- Low traffic: TBD
- Medium traffic: TBD
- High traffic: TBD
- Congested: TBD

CSREQ-4288

A CC_CONFIG message shall be sent when there is a change in the system load status and with a periodicity not less than TBD seconds.

CSREQ-4290

The CC_CONFIG message can be sent either as a standalone message or be integrated as a part of signalling framework (details TBD).

9.2.6.1.2 Return Link contention resolution protocol for signalling channel

To be revised in B2.

9.2.7 Redundancy and failure detection procedures

Redundancy and failure detection procedures are basically transparent to the CS. Whenever a failure event happens, the communication system will reconfigure itself to use the backup entities, making the UT basically unaware of the event, except for any possible handover procedures execution.

CSREQ-4380

Upon total loss of reception from any GS element, the UT shall allow TBD s for GS redundancy procedures to restore communications before activating failure procedures.

Note: RAMS analysis to provide values for the requirement above.

9.2.8 Security control procedures

Refer to 8.3.

9.2.9 Network interface procedures

9.2.9.1 ATN/OSI

CSREQ-4500

At the time the interface between the airborne router and the UT becomes enabled, the airborne router shall send a PARAM.request message to the UT.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:162 of 228

CSREQ-4510

Upon the reception of a PARAM.request message from an airborne router at the UT, the UT shall respond with a PARAM.confirm towards the airborne router.

CSREQ-4520

At the time an L3 handover or a logoff is performed, the GES shall send a LOGOFF.indication towards the A/G-R.

9.2.9.1.1 Legacy Mode

CSREQ-4530

At the time the interface between the GES and the A/G-R becomes enabled, the A/G-R shall provide its own network address to the GES.

CSREQ-4540

Upon the reception of a JOIN.indication message from the UT at the airborne router, the airborne router shall start an ISH 8208 call establishment procedure towards the GES.

CSREQ-4550

Upon the reception of an ISH 8208 call establishment procedure from an airborne router at the GES, the GES shall start an ISH 8208 call establishment procedure towards the A/G-R.

CSREQ-4560

Upon the establishment of an 8208 connection between the GES and the A/G-R, the A/G-R shall perform an IDRP Connection Establishment towards the airborne router.

CSREQ-4570

Upon the establishment of an IDRP Connection between an airborne router and an A/G-R, the airborne router shall perform an IDRP routing information exchange towards the A/G-R.

CSREQ-4580

Upon the establishment of an IDRP Connection between an airborne router and an A/G-R, the A/G-R shall perform an IDRP routing information exchange towards the airborne router.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 163 of 228

9.2.9.1.2 Iris Mode

CSREQ-4590

At the time the interface between the GES and the A/G-R becomes enabled, the A/G-R shall provide the following information to the GES:

- Its own network address
- Network prefixes for which the A/G-R has access

CSREQ-4600

Upon the L2 logon procedure is finished, the GES shall forward to the A/G-R a LOGON.indication with the following parameters:

- Airborne router address
- Classes of Service supported

CSREQ-4610

Upon the L2 logon procedure is finished, the UT shall forward to the airborne router a JOIN.indication.

9.2.9.1.3 Legacy Conversion Mode

CSREQ-4620

At the time the interface between the GES and the A/G-R becomes enabled, the A/G-R shall provide the following information to the GES:

- Its own network address
- Network prefixes for which the A/G-R has access

CSREQ-4630

Upon the L2 logon procedure is finished, the GES shall forward to the A/G-R a LOGON.indication with the following parameters:

- Airborne router address
- Classes of Service supported

CSREQ-4640

Upon the reception of a JOIN.indication message from the UT at the airborne router, the airborne router shall start an ISH 8208 call establishment procedure towards the UT.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:164 of 228

CSREQ-4650

Upon the establishment of an 8208 connection between the UT and the A/G-R, the UT shall perform an IDRP Connection Establishment towards the airborne router.

CSREQ-4660

Upon the establishment of an IDRP Connection between an airborne router and the UT, the airborne router shall perform an IDRP routing information exchange towards the UT.

CSREQ-4670

Upon the establishment of an IDRP Connection between an airborne router and the UT, the UT shall perform an IDRP routing information exchange towards the airborne router.

9.3 Security

CSREQ-6300

The CS shall not support any mechanism for control plane data encryption.

CSREQ-6310

The CS shall not support any mechanism for control plane data authentication.

CSREQ-6320

CS control procedures shall not require authentication of UTs or GS elements.

9.4 Control plane forward link specification

9.4.1 Link layer specification

9.4.1.1 ARQ protocol

Refer to User plane (section 8.5.1.1).

9.4.1.2 Encapsulation

Refer to User plane (section 8.5.1.1).

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 ISSUE:
 Draft01
 PAGE: 165 of 228

9.4.1.3 Security

Refer to 8.3.

9.4.2 Physical layer specification

CSREQ-4700

The forward link control shall use the following burst types:

• FCH burst (DAMA burst)

CSREQ-7210

The FWD Link Control Plane shall use the Physical layer specification detailed in section 8.5.2 for the FWD Link User Plane with the exception that ACM is not supported for signalling purposes.

The signalling bursts shall use QPSK 1/3.

9.5 Control plane return link specification

9.5.1 Link layer specification

9.5.1.1 ARQ protocol

Refer to User plane (section 8.6.1.1).

9.5.1.2 Encapsulation

Refer to section 8.6.1.3.

9.5.1.3 Security

Refer to 8.3.

9.5.2 Physical layer specification

CSREQ-4990

The return link control plane shall use the following burst types:

• RACH burst (Random Access burst)

CSREQ-4991

The RTN Link Control Plane shall use the Physical layer specification detailed in section 8.6.2 for the RTN Link User Plane

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND	
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 166 of 228

10. MANAGEMENT PLANE SPECIFICATION

10.1 Management plane description

The term management plane refers to a subset of functions related to management of the satellite network from a communication standard point of view. The management plane aims at supporting non-real time functions, such as FCAPS (Fault, Configuration, Accounting, Performance, and Security), network resources operation planning (frequency allocation, network reconfiguration, maintenance phases planning, etc.) as well as user database management.

It is noted that only a small subset of these functions are proposed hereafter for standardisation in the CS.

10.2 Management procedures

10.2.1 General management procedures

CSREQ-5800

Management of elements shall be based on SNMP version 3 (SNMPv3) as in [RD-18].

CSREQ-5460

All management elements definition shall be compatible with SMIv2 [RD-01] defined structures.

CSREQ-5470

The following SMIv2 defined MIBs will be implemented by all system elements:

- SNMP MIB defined in [RD-02] which allows to characterise the SNMP entity itself
- IF-MIB defined in [RD-03] for technology independent interface management
- ALARM-MIB defined in [RD-04] for all alarm related management

10.2.2 Monitoring and configuration

CSREQ-5480

At least the following monitoring parameters shall be accessible (read-only) by a Ground Segment management entity from Ground Segment elements about all their interfaces:

Parameter	Description	Туре
Interface status	Indicates the status of the interface. The status can be either "down" (0), "up" (1), or "standby" (2). The "standby" state being used for interface redundancy purposes.	Octet
List of logged on UT*	Provides a list of the ID of all the aircraft currently under the responsibility of the element	Octet String

 Reference:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

ISSUE: Draft01 PA

PAGE: 167 of 228

Parameter	Description	Туре
Traffic Log*	Indicates the location of the traffic log files on the local file system for retrieval.	Octet String
Tx bytes	Provides the number of bytes transmitted on the interface since system startup. This value is used by monitoring entities to compute average throughput.	Counter
Rx bytes	Provides the number of bytes received on the interface since system startup. This value is used by monitoring entities to compute average throughput.	Counter
Rx Power*	Indicates the received signal power level (0.1 dBm units).	Integer
SNIR*	Indicates the received Signal-to-(Noise+Interference) Ratio (0.1 dB units).	Integer
BER*	Indicates the current average bit error rate on the air interface (1E-9 units).	Integer
PER	Indicates the current Packet Error rate on a given interface (1E-9 units).	Integer
ModCod list*	Provides a list of the ModCod currently in use for each of the user terminals currently under this elements responsibility.	Octet String
Last context replication timestamp	Indicates the timestamp of the last context replication towards the redundant element in case the element is currently the active primary. Otherwise, the value indicates the timestamp of the last received context replication from the primary.	Timestamp
Random Access collision rate	Indicates the current rate of collisions for the random access channel (return carrier(s)).	Integer
Fault History	Lists the fault IDs of all the faults that have been recorded since system startup indicating, for each fault, the timestamp at which it has occurred.	Octet String
Current Fault Status	Provides informative access to the current fault status for the ground segment element.	Octet String

(*) For air interfaces only

Table 10-1: GS monitored parameters

CSREQ-5490

At least the following configurable parameters shall be accessible (read-write) by a Ground Segment management entity from Ground Segment elements about all their interfaces:

Parameter	Description	Туре
L2 addresses	For each of the element interfaces, provides access to the layer 2 address.	Octet String
L3 addresses	For each of the element interfaces, provides access to the layer 3 addresses configured on the interface.	Octet String
Carrier Frequency Allocation	List of parameters that characterise the carriers to be used by the element both for transmission and reception of traffic and signalling data.	Octet String
Redundancy Role	Indicates the role of the element in the redundancy architecture. This role can either be "primary" or "redundant" depending on the value that is set.	Octet
Redundancy peer address	Indicates the address of the peer element in the redundancy architecture.	Octet String
Context replication periodicity	Indicates the frequency, in milliseconds, of the context replication from the active primary towards the redundant standby in the redundancy architecture. This value is also used by failure detection mechanisms to dimension the timers.	Integer

REFERENCE:ANTAR-B1-CP-TNO-2006-IND**DATE:**20/03/2012

ISSUE: Draft01 **PAGE:** 168 of 228

Parameter	Description	Туре
Adjacent systems information	Provides system information for each of the systems to which inter-system handover can be performed.	Octet String

Table 10-2: GS configurable parameters

10.2.3 Security aspects

Refer to 8.3.

11. PHYSICAL LAYER COUNTERMEASURES

11.1 Channel impairment countermeasures

11.1.1 Forward link channel impairments countermeasures

11.1.1.1 Diversity

CSREQ-5540

Forward Diversity techniques shall be applicable for user and control plane.

CSREQ-5550

If Ku-band frequencies are used for the fixed uplink, transmission site diversity may be implemented.

CSREQ-5560

If Ka-band frequencies are used for the fixed uplink, transmission site diversity shall be implemented.

CSREQ-5570

In case of implementing site diversity, the distance between GS element shall be compliant with [RD-17] for a given availability.

CSREQ-5580

Only one link shall be active at any time (best link selection)

11.1.2 Return link channel impairments countermeasures

11.1.2.1 Diversity

CSREQ-5640

Return Diversity techniques shall be applicable for user and control plane.

CSREQ-5650

If Ku-band frequencies are used for the fixed uplink, reception site diversity may be implemented.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:170 of 228

CSREQ-5660

If Ka-band frequencies are used for the fixed uplink, reception site diversity shall be implemented.

CSREQ-5670

In case of implementing site diversity, the distance between GS element shall be compliant with [RD-17] for a given availability.

CSREQ-5680

The return link site diversity algorithm shall be based on selection of the best link.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012ISSUE:Draft01PAGE:171 of 228

12. SIGNALLING STRUCTURES

(To be revised in B2)

This section provides detailed information about the PDUs of the signalling structures to be used for several control procedures.

CSREQ-5770

The exchanged signalling messages shall comply with the structures shown in the following subsections.

12.1 System information tables

TBD

12.2 Handover

Note: see section 9.2.2 note.

By now, eight different types of HO are defined, each of them requiring a specific signalling exchange between the involved entities. Below, the set of PDUs available for HO control functions are detailed.

12.2.1 HO Recommendation

HO Recommendation		
Content of message	size (Bytes)	comments
Message type	1	
HO type	1	
UT ID (optional)	2	
Signal power measurements	64	8 neighbour information
Position Coordinates	24	3 position coordinates (trajectory)
APB Preferences	20	10 preferences of 2 Bytes
new GES ID (optional)	1	
TOTAL SIZE (Bytes)	113	

12.2.2 New NCC information

New NCC Information		
Content of message	size (Bytes)	comments
Message type	1	
New NCC ID	1	
TOTAL SIZE (Bytes)	2	

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 172 of 228

12.2.3 HO Command

HO Command		
Content of message	size (Bytes)	comments
Message type	1	
previous GES ID (optional)	1	
new GES ID (optional)	1	
Physical layer parameters	64	
TOTAL SIZE (Bytes)	67	

12.2.4 Connection close

Connection close		
Content of message	size (Bytes)	comments
Message type	1	
TOTAL SIZE (Bytes)	1	

12.2.5 ACK Connection close

ACK Connection close		
Content of message	size (Bytes)	comments
Message type	1	
TOTAL SIZE (Bytes)	1	

12.2.6 HO finished

HO Finished		
Content of message	size (Bytes)	comments
Message type	1	
previous GES ID	1	
new GES ID	1	
TOTAL SIZE (Bytes)	3	

12.3 Multicast

One multicast signalling message can contain reports for multiple multicast groups. In this sense, the size of multicast join messages is variable and depends on the number of multicast groups reported.

12.3.1 Multicast join

Multicast join		
Content of message	size (Bytes)	comments
Message type	1	
Number of Mcast address records (N)	1	Multicast groups reported
Filter mode	1	Include/Exclude
Multicast address record	>34	Multicast address + N source addresses
TOTAL SIZE (Bytes)	>36	

REFERENCE:	ANTAR-B1	-CP-TNO-2006-IND
DATE:	20/03/2012	
ISSUE:	Draft01	PAGE: 173 of 228

12.3.2 Multicast join ACK

Multicast join ACK		
Content of message size (Bytes) comments		
Message type	1	
Number of Mcast address records (N)	1	Multicast groups reported
Filter mode	1	Include/Exclude
Multicast address record	>34	Depends on the number of source addresses
TOTAL SIZE (Bytes)	>36	

12.3.3 Multicast leave

Multicast leave		
Content of message size (Bytes) comments		
Message type	1	
Number of Mcast address records (N)	1	Multicast groups reported
Filter mode	1	Include/Exclude
Multicast address record	>34	Depends on the number of source addresses
TOTAL SIZE (Bytes)	>36	

12.3.4 Multicast change state report

Multicast change report		
Content of message size (Bytes) comments		
Message type	1	
Number of Mcast address records (N)	1	Multicast groups reported
Filter mode	1	Include/Exclude
Multicast address record	>34	Depends on the number of source addresses
TOTAL SIZE (Bytes)	>36	

12.4 Logon

Two operation modes are proposed for logon, the transparent mode and the ANTARES integrated mode. In transparent mode, L2 logon opens an interface which is used for finalizing the logon procedure at L3. Otherwise, the ANTARES integrated mode translates several L3 logon fields to L2 so that logon can be entirely performed at L2 level. (TBD)

12.4.1 Logon request

LOGON Request		
Content of message	size (Bytes)	comments
Message type	1	
UT/System capabilities & configuration	32	(TBC) UT CS parameters and capabilities
TOTAL SIZE (Bytes)	33	

The content of a logon request may vary in function if in ATN/OSI or ATN/IPS mode.

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDate:20/03/2012Issue:Draft01Page: 174 of 228

12.4.2 Logon confirmation

LOGON Confirmation		
Content of message	size (Bytes)	comments
Message type	1	
UT/System admission	16	(TBC)
UT/System configuration	16	(TBC)
TOTAL SIZE (Bytes)	33	

The content of a logon confirmation may vary in function if in ATN/OSI or ATN/IPS mode.

12.5 RRM

TBD

12.6 Random Access

The signalling structures used for RA are mainly involved with congestion control functions and control checks. This section details the used PDUs.

12.6.1 RACH Congestion control

RACH Congestion control		
Content of message	size (bytes)	comments
Message type	1	
CC method type	1	
CC parameters	1	
TOTAL SIZE (Bytes)	2	

12.7 Voice Control

The signalling structures used for voice are mainly involved with specific CBR channel reservation and admission notification. They are encapsulated over IP and used in the interfaces number 4 and 6 of Figure 4-2.

12.7.1 cbr on

cbr on		
Content of message	size (Bytes)	comments
Message type	1	
Notification ID	2	(TBC)
Connection ID	2	(TBC)
Interlocutor ID	2	(TBC)
TOTAL SIZE (Bytes)	7	

12.7.2 cbr off

The structure of the message is the same as the one presented for the "cbr on" message in section 12.7.1.

12.7.3 cbr req

cbr req		
Content of message	size (Bytes)	comments
Message type	1	
Notification ID	2	(TBC)
Interlocutor ID	2	(TBC)
TOTAL SIZE (Bytes)	5	

12.7.4 cbr rel

The structure of the message is the same as the one presented for the "cbr on" message in section 12.7.1.

12.7.5 req cbr

The structure of the message is the same as the one presented for the "cbr req" message in section 12.7.3.

12.7.6 rel cbr

The structure of the message is the same as the one presented for the "cbr on" message in section 12.7.1.

12.7.7 ack

The structure of the message is the same as the one presented for the "cbr req" message in section 12.7.3.

12.8 Network synchronisation

12.8.1 SYNC correction

SYNC Corrections Message								
Message content	Size [bits]	Step	Range	Units	Comments			
Message type	8	NA	0 - 256	NA				
UT identifier	16	NA	0 - 65535	NA				
Carrier frequency correction	11	10	+/-10240	Hz				
RFU	5	NA	NA	NA	Reserved for future use			
Total size	40			bits				
Total size	5			bytes				

12.8.2 NCR field

Message content	Size [bits]	Step	Range	Units	Comments
Message type	8	NA	0 - 256	NA	
NCR counter	40	NA	-	Hz	Tics of the 27 MHz Netw ork Clock Reference
Total size	48			bits	
Total size	6			bytes	

12.9 ACM

TBD

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:176 of 228

13. ANNEX A: AERONAUTICAL CHANNEL AND CODING PERFORMANCES

13.1 Aeronautical channel scenarios

The propagation conditions have been categorised in a set of relevant scenarios. The following table summarises the aeronautical propagation scenarios

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01 **PAGE:** 177 of 228

		Elevation	Aircraft	Aircraft Aircraft	LS parameters		GR parameters			Periodic fades							
o Id	Aircraft type	Region	Latitude	Surface	Banking	Scintillation	angle range	angle Speed range (km/h)	Speed Altitude (km/h) (km)	K_LS (dB)	Doppler Spread (Hz)	K_GR (dB)	Doppler Spread (Hz)	Delay LoS- GR (μs)	Fade Depth (dB)	Fade duration (ms)	Fading period (ms)
1	Fixed wing	ECAC	Medium	Ground	No	No	[10º, 35º]	900	10	14	1	20	32.8	11.5	N.A	N.A	N.A
2a	Fixed wing	ECAC	Medium	Sea	No	No	[10º, 35º]	900	10	14	1	10	32.8	11.5	N.A	N.A	N.A
2b	Fixed wing	ECAC	Medium	Sea	No	Yes	[10º, 35º]	900	10	14	1	10	32.8	11.5	N.A	N.A	N.A
4	Fixed wing	ECAC	High	Sea	No	No	[5º, 10º]	900	10	14	1	5	18.4	5.8	N.A	N.A	N.A
7	Fixed wing	ECAC	Low	Sea	No	No	> 35°	900	10	14	1	15	103.65	38.28	N.A	N.A	N.A
6a	Fixed wing	Global	Medium	Sea	No	No	[10º, 35º]	900	10	14	1	10	32.8	11.5	N.A	N.A	N.A
6b	Fixed wing	Global	Low	Sea	No	Yes	> 35°	900	10	14	1	15	103.65	38.28	N.A	N.A	N.A
9	Rotary wing	ECAC	Medium	Ground	No	No	[10º, 35º]	315	5.5	14	1	20	11.24	6.37	7	10.8	54

Table 13-1: Aeronautical propagation scenarios

It should be noted that the Doppler Spread corresponding to Scenario #9 is different from the one reported for Scenario #1, #2a, #2b and #6a due to the aircraft speed is different: Scenario #9 corresponds to a rotary-wing aircraft while the others to a fixed-wing aircrafts.

13.2 Forward Link FEC Error Performance

The input stream to the LDPC encoder shall be a BBFRAME and the output stream a FECFRAME. Each BBFRAME (k_{ldpc} bits) shall be processed by the FEC coding subsystem, to generate a FECFRAME (n_{ldpc} bits).

The following table illustrates the turbo coding configurations.

MODCOD Id	Mode	LDPC Uncoded Block k _{Idpc} (bits)	LDPC Coded Block n _{Idpc} (bits)				
MODCOD 1	QPSK 1/3	2048	6144				
MODCOD 2	QPSK 1/2	3072 [4096]	6144 [8192]				
MODCOD 3	QPSK 2/3	4096	6144				
MODCOD 4	8-PSK 1/2	4608 [4096]	9216 [8192]				
MODCOD 5	8-PSK 2/3	6144	9216				
MODCOD 6	16-APSK 2/3	8192	1288				

Table 13-2: FWD Link FEC parameters

Note: MODCOD 2 and MODCOD 4 PER curves reported in this section correspond to a Data Word of 4096 bits in each case instead of 3072 for MODCOD2 and 4608 for MODCOD4.

The results presented in this section have been obtained considering the following configuration parameters:

- Channel estimation / sampling: ideal over the LOS component.⁴
- Monte Carlo method: 100 block errors.
- Roll-off: 0.2
- Interleaving: L=4 (with exception of Channel 6, where L=1).
- Baud rate: 150 ksps (with exception of Channel 6, where it is close to 18 ksps)
- Nominal number of LDPC Decoder iterations: 50.

⁴ We sample the received signal at the optimum sampling time for the LOS component. Additionally, the channel coefficient used for soft-demodulation has been assumed to be coefficient of the LOS component. The approach provided to be accurate, due to the relatively-large C/M factors, and for the relatively large delay of the reflected component. In the worst case scenario (4), the C/M=5dB, and the delay is roughly 0.87*Ts (being Ts the symbol time). The filter response pulse at t=0.87*Ts more than 15 dB lower than the peak value. Thus, the ratio between the LOS component power and the useful contribution coming from the ground reflection in Scenario 4 is more than 20 dB, which does not visibly affect the decoder performance. For Scenario 6, where the baud rate is reduced, the reflection is between 10 and 15 dB below the LOS component, hence the channel estimation can be still assumed accurate.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 Page: 179 of 228

Figure 13-2: PER vs. Eb/N0 for Scenario 2a.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND			
DATE:	20/03/2012			
ISSUE:	Draft01	PAGE: 180 of 228		

Figure 13-4: PER vs. Eb/N0 for Scenario 4.

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 Date:
 20/03/2012

 Issue:
 Draft01
 Page: 181 of 228

Figure 13-6: PER vs. Eb/N0 for Scenario 6b.

Reference: ANTAR-B1-CP-TNO-2006-IND **Date:** 20/03/2012

ISSUE: Draft01 PAGE: 182 of 228

Figure 13-8: PER vs. Eb/N0 for Scenario 9 (rotary-wing).

13.3 Return Link FEC Error Performance

The input stream to the Turbo encoder shall be a BBFRAME and the output stream a FECFRAME. Each BBFRAME (k_{TCC} bits) shall be processed by the FEC coding subsystem, to generate a FECFRAME (n_{TCC} bits).

The following table illustrates the turbo coding configurations:

RACH Configuration ID	Code rate	TCC Uncoded Block k _{τcc} (bits)	Tail bits	TCC Coded Block n _{TCC} (bits)
RACH_CR ₁₆₀ _SF ₁₆ _DB ₅₁₂	1/3	512 bits	12 bits	1548 bits
RACH_CR ₁₆₀ _SF ₄ _DB ₂₀₄₈	1/3	2048 bits [4096 bits]	12 bits	6156 bits [8204 bits]
RACH_CR ₁₆₀ _SF ₄ _DB ₂₈₈	1/3	288 bits [-]	12 bits	876 bits [-]

Table 13-3: RACH TCC coding configurations

The results presented in the following sub-sections have been obtained with the following configuration parameters:

Parameters	Value
UT HPA	No (lineal HPA)
TCC type	Binary 16-states
Decoder Algotithm	Log-MAP
Number of iterations	10
Block interleaver	Yes, as specified in the CS Technical specification

Table 13-4: RTN Link PER simulation parameters

Note: PER curves for RACH_CR₁₆₀_SF₄_DB₂₀₄₈ and RACH_CR₁₆₀_SF₄_DB₂₈₈ are not available. Instead of these results, PER curves for a BBFRAME of 4096 are provided.

The following figures present the PER curves with:

- Ideal channel estimation (perfect knowledge of the channel coefficients)
- Real channel estimation: the channel is estimated from the Control channel, which is 10 dB below the Data Channel and using a sliding window of 250 symbols.

Figure 13-9: PER curves in aeronautical channel for configuration RACH_CR₁₆₀_SF₁₆_DB₅₁₂ with ideal channel estimation and with channel estimation

Figure 13-10: PER curves in aeronautical channel BBFRAME = 4096 bits with ideal channel estimation and with channel estimation

14. ANNEX B: LDPC ENCODING PROCEDURE AND ADDRESSES OF PARITY BIT ACCUMULATORS FOR IRA LDPC

14.1 LDPC encoding procedure

LDPC encoder systematically encodes an information block of size k, $i = (i_0, i_1, ..., i_{k-1})$ onto a codeword of size n, $c = (i_0, i_1, ..., i_{k-1}, p_0, p_1, ..., p_{n-k-1})$ The transmission of the codeword starts in the given order from i_0 and ends with p_{n-k-1} .

The task of the encoder is to determine n-k parity bits $(p_0, p_1, ..., p_{n-k-1})$ for every block of k information bits, $(i_0, i_1, ..., i_{k-1})$. The procedure is follows:

- Initialise $p_0 = p_1 = p_2 = ... = p_{n-k-1} = 0$
- Accumulate the first information bit, i_0 , at parity bit addresses specified in the first row of parity bit addresses. For example, for r=1/2 and k_{ldpc}=4096 bits code (section 14.2.7), (All additions are in GF(2))

$$p_{383} = p_{383} \oplus i_0$$
$$p_{1836} = p_{1836} \oplus i_0$$
$$p_{2903} = p_{2903} \oplus i_0$$
$$p_{3461} = p_{3461} \oplus i_0$$

 For the next c-1 information bits (c=128 for the 2k, 4k and 6k codes, c=256 for the 8k code), *i_m*, *m*=1,2,...,*c*-1 accumulate *i_m* at parity bit addresses {*x*+*m*mod *c*×*q*}mod(*n*-*k*) where *x* denotes the address of the parity bit of the accumulator corresponding to the first bit *i*₀, and *q* is specified in Table 14-1. Continuing with the example, *q*=32. So for example for information bit *i*₁, the following operations are performed,

$$p_{415} = p_{415} \oplus i_1$$

$$p_{1868} = p_{1868} \oplus i_1$$

$$p_{2935} = p_{2935} \oplus i_1$$

$$p_{3493} = p_{3493} \oplus i_1$$

• For the $(c+1)^{th}$ information bit i_c , the addresses of the parity bit accumulators are given in the second row the table presented in section 14.2.7. In a similar manner the addresses of the parity bit accumulators for the following c-1 information bits $i_m, m = c+1, ..., 2c-1$ are obtained using the formula $\{x+m \mod c \times q\} \mod (n-k)$ where *x* denotes the address of the

parity bit accumulator corresponding to the information bit i_c , i.e. the entries in the second row of the table in section 14.2.7.

• In a similar manner, for every group of c new information bits, a new row from the table in section 14.2.7 is used to find the addresses of the parity bit accumulators.

After all of the information bits are exhausted, the final parity bits are obtained as follows,

• Sequentially perform the following operations starting with i = 1

$$p_i = p_i \oplus p_{i-1}, \quad i = 1, 2, ..., n-k-1$$

• Final content of p_i , i = 0, 1, ..., n - k - 1 is equal to the parity bit p_i .

Block Size	q/c
2048	32/128
3072	TBD
4096	16/128
4608	TBD
6144	24/128
8192	16/256

Table 14-1: q/c values.

14.2 Addresses of parity bit accumulator for IRA LDPC

14.2.1 MODCOD1 parity bit accumulator (r=1/3 and $k_{ldpc} = 2048$)

```
4699622940375221732953358738942021796211040232999972431356853655016762513313711215737301151710207430404636732011382814462093239628395928461021227967211501873401515222184268736491848093234385984217163171405717153313802234
```


REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:187 of 228

172 1659 1974 2373

Table 14-2: MODCOD1 parity bit accumulator addresses (r=1/3 and kldpc = 2048)

14.2.2 MODCOD2 parity bit accumulator (r=1/2 and $k_{ldpc} = 3072$)

TBD

14.2.3 MODCOD3 parity bit accumulator (r=2/3 and $k_{ldpc} = 4096$)

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 188 of 228	

Table 14-3: MODCOD3 parity bit accumulator (r=2/3 and kldpc = 4096)

14.2.4 MODCOD4 parity bit accumulator (r=1/2 and $k_{ldpc} = 4608$)

TBD

14.2.5 MODCOD5 parity bit accumulator (r=2/3 and $k_{ldpc} = 6144$)

UNCLASSIFIED

Table 14-4: MODCOD5 parity bit accumulator (r=2/3 and kldpc = 6144)

14.2.6 MODCOD6 parity bit accumulator (r=2/3 and $k_{ldpc} = 8192$)

Reference:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 190 of 228	

Table 14-5: MODCOD6 parity bit accumulator (r=2/3 and kldpc = 8192)

14.2.7 Additional parity bit accumulator (r=1/2 and $k_{ldpc} = 4096$)

Table 14-6: Additional parity bit accumulator (r=1/2 and kldpc = 4096)

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:191 of 228

15. ANNEX C: FORWARD LINK BIT INTERLEAVING MATRIX

Deleted

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDate:20/03/2012Issue:Draft01Page: 192 of 228

16. ANNEX D: TURBO CODE INTERNAL INTERLEAVER ALGORITHM

The turbo interleaver functionality shall be such that the input bits are readdressed following a certain mapping sequence, in position *i* of which the new address of input bit *i* can be read. This mapping sequence is generated following the process defined in the 3GPP2 standard and described below.

An (n+5)-bit counter, initialised to 0 and where n is the smallest integer such that $N_{turbo} \le 2^{n+5}$ (N_{turbo} is input bit sequence length), is used as input to the algorithm detailed in Figure 16-1, in such a way that the output is the new address for each *i* generated by the counter.

Figure 16-1: Turbo interleaver output address calculation algorithm.

REFERENCE:	ANTAR-B1-CP-TNO-2006-IND		
DATE:	20/03/2012		
ISSUE:	Draft01	PAGE: 193 of 228	

The lookup table included in algorithm is depicted in the following table.

Table index	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10
0	1	5	27	3	15	3	13	1
1	1	15	3	27	127	1	335	349
2	3	5	1	15	89	2	87	303
3	5	15	15	13	1	83	15	721
4	1	1	13	29	31	19	15	973
5	5	9	17	5	15	179	1	703
6	1	9	23	1	61	19	333	761
7	5	15	13	31	47	99	11	327
8	3	13	9	3	127	23	13	453
9	5	15	3	9	17	1	1	95
10	3	7	15	15	119	3	121	241
11	5	11	3	31	15	13	155	187
12	3	15	13	17	57	13	1	497
13	5	3	1	5	123	3	175	909
14	5	15	13	39	95	17	421	769
15	1	5	29	1	5	1	5	349
16	3	13	21	19	85	63	509	71
17	5	15	19	27	17	131	215	557
18	3	9	1	15	55	17	47	197
19	5	3	3	13	57	131	425	499
20	3	1	29	45	15	211	295	409
21	5	3	17	5	41	173	229	259
22	5	15	25	33	93	231	427	335
23	5	1	29	15	87	171	83	253
24	1	13	9	13	63	23	409	677
25	5	1	13	9	15	147	387	717
26	1	9	23	15	13	243	193	313
27	5	15	13	31	15	213	57	757
28	3	11	13	17	81	189	501	189
29	5	3	1	5	57	51	313	15
30	5	15	13	15	31	15	489	75
31	3	5	13	33	69	67	391	163

Table 16-1: Turbo	o interleaver	lookup	table	definition
-------------------	---------------	--------	-------	------------

REFERENCE:ANTAR-B1-CP-TNO-2006-INDDATE:20/03/2012Issue:Draft01PAGE:194 of 228

17. ANNEX E: RETURN LINK BIT INTERLEAVING MATRIX

Deleted

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

> **ISSUE:** Draft01

PAGE: 195 of 228

18. ANNEX F: INDIVIDUAL HO PROCEDURE SEQUENCE DIAGRAMS

(To be revised in B2

See note at section 9.2.2. In this section, the sequence diagram for nominal conditions of each type of HO procedure is shown.

18.1 Satellite change, same LAN

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 196 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 197 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 **PAGE:** 198 of 228

Figure 18-1: Satellite change with previous & new GES connected to the same LAN

20/03/2012

DATE:

ISSUE: Draft01

PAGE: 199 of 228

18.2 Satellite change, different LAN

ındra

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 200 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 PA

PAGE: 201 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 202 of 228

Figure 18-2: Satellite change with previous & new GES connected to different LANs

Note: The L3 network update procedure of this diagram and subsequent ones is a logical representation of the L3 HO procedures for ATN/OSI and ATN/IPS described in Annex XIV of D021.

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 203 of 228

18.3 SSP change

ındra

ISSUE:

DATE: 20/03/2012

ındra

Draft01

PAGE: 204 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 205 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 PAGE

PAGE: 206 of 228

Figure 18-3: SSP change. Previous & new GES connected to different LANs

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 207 of 228

ındra

....

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 208 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 209 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01

PAGE: 210 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01 PAGE: 211 of 228

Figure 18-4: Beam change in which previous GES and new GES are the same entity

DATE: 20/03/2012

ISSUE: Draft01 PAG

PAGE: 212 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 PAGE:

PAGE: 213 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 214 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01 F

PAGE: 215 of 228

Figure 18-5: Beam change with previous & new GES connected to the same LAN

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 216 of 228

18.6 Beam change, different LAN

ındra

....

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01

PAGE: 217 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

ISSUE:

DATE: 20/03/2012

Draft01

PAGE: 218 of 228

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01

PAGE: 219 of 228

Figure 18-6: Beam change with previous & new GES connected to different LANs

DATE: 20/03/2012

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01

PAGE: 221 of 228

Figure 18-7: GES change with previous & new GES connected to the same LAN

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

> **ISSUE:** Draft01

PAGE: 222 of 228

18.8 GES change, different LAN

ındra

....

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

DATE: 20/03/2012

ISSUE: Draft01

PAGE: 223 of 228

Figure 18-8: GES change with previous & new GES connected to different LAN

REFERENCE: ANTAR-B1-CP-TNO-2006-IND

20/03/2012 DATE:

> Draft01 **ISSUE:**

PAGE: 224 of 228

19. ANNEX G: GROUND TO GROUND SIGNALLING SPECIFICATION

[To be specified after system architecture consolidation]

20. ANNEX H: ACM MECHANISM IMPLEMENTATION GUIDELINES

This Annex presents some guidelines for the ACM mechanism implkementation.

Previous CSREQ-6460

The LDPC decoder shall be able to provide the BBFRAME at $N_{reduced}$ number of iterations. The $N_{reduced}$ number of iterations shall be configurable depending on the MODCOD.

20.1 Fast ACM mechanism

Related to CSREQ-7320

The Hysteresis mechanism between slow and fast mechanism can be based on the following strategy:

- A "Prevent MODCOD upgrade" timer shall be started each time a switch to the most robust MODCOD is decided using the Fast ACM Mechanism.
- While the "Prevent MODCOD upgrade" timer is running, any switch to a less robust MODCOD shall be prevented.
- The "Prevent MODCOD upgrade" timer duration should be around 90 seconds. This hysteresis mechanism would allow to reduce the signalling required when the aircraft evolves at high latitude where banking false detection are occurring more often due to the highest variability of the SNIR.

20.2 Slow ACM mechanism

Related to CSREQ-7090

The Slow ACM mechanism can monitor the PER for each MODCOD getting the decoded packet at a reduced number of LDPC decoder iterations ($N_{reduced}$).

Previous CSREQ-7100

The Slow ACM mechanism can implement the transitions as follows: to the next more robust MODCOD (downgrade) or to the next best available less robust MODCOD (upgrade).

(Note: for instance, assuming that the current MODCOD used by the UT is MODCOD3, the slow mechanism only allow the transitions to MODCOD2, in case of downgrade, or MODCOD4 or higher in case of upgrade)

Previous CSREQ-7110

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 Page: 226 of 228

For each MODCOD, a PER threshold at a reduced number of decoder iteration ($N_{reduced}$) shall be defined so that when the measured PER at this reduced number of decoder iteration is below the PER threshold it would guarantee that the PER after a nominal number of iterations ($N_{nominal}$) is below the target PER. The threshold shall be defined by two parameters:

- *N_{reduced}* decoder iterations value
- The PER threshold al Nreduced iterations

Related to CSREQ-7280

The PER threshold at a reduced number of decoder iteration shall be measurable over less than 1000 Code Word. As a consequence, the PER threshold at a reduced number of decoder iterations shall be above 10⁻¹

Previous CSREQ-7130

The $N_{reduced}$ interations and the PER threshold at $N_{reduced}$ decoder iterations may be the ones reported in Table 20-1: Recommended $N_{reduced}$ decoder iterations and PER threshold at $N_{reduced}$ decoder iterations for the FWD Link MODCODS.

MODCOD Id	Modulation	Code rate	N _{reduced} decoder itetarions	PER threshold at <i>N_{reduced}</i> decoder iterations
MODCOD1	QPSK	0.33		
MODCOD2	QPSK	0.50	3	0.1
MODCOD3	QPSK	0.67	2	0.142
MODCOD4	8PSK	0.50	4	0.272
MODCOD5	8PSK	0.67	3	0.0845
MODCOD6	16APSK	0.67	3	0.121

Table 20-1: Recommended $N_{reduced}$ decoder iterations and PER threshold at $N_{reduced}$ decoderiterations for the FWD Link MODCODs

Related to CSREQ-7140

The UT can monitor the PER using $N_{reduced}$ decoder iterations for each MODCOD and for each GES using its assigned forward link carrier.

(Note: it has been assumed that the UT uses the bursts transmitted by its assigned GES to compute the PER at N_{reduced} decoder iterations despite of an Uplink Power control is put in place.)

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 Issue:
 Draft01
 PAGE: 227 of 228

Previous CSREQ-7150

The PER at $N_{reduced}$ decoder iterations for each MODCOD may be computed over a sliding window of 1000 consecutive Code Words (TBC).

Related to CSREQ-7160

The recommened MODCOD selection mechanism is as follows:

- MODCOD downgrade: When the PER after N_{reduced} decoder iterations for the current MODCOD increases above PER threshold at N_{reduced} decoder iteration, the UT shall request the GES to send further packets with the next more robust MODCOD available on the forward link.
- MODCOD upgrade: When the PER after N_{reduced} decoder iterations for the next less robust MODCOD decreases below PER threshold at N_{reduced} decoder iteration, the UT shall request the GES to send further packets with the next less robust MODCOD available on the forward link.

Related to CSREQ-7170

The recommended Hysteresis mechanism is as follows:

- A "Prevent_MODCOD_upgrade" timer shall be started each time a switch to a more robust MODCOD is done.
- While the "Prevent_MODCOD_upgrade" timer is running, any switch to a less robust MODCOD shall be prevented.

The "*Prevent_MODCOD_upgrade*" timer duration should be around 90 s (TBC).

 REFERENCE:
 ANTAR-B1-CP-TNO-2006-IND

 DATE:
 20/03/2012

 ISSUE:
 Draft01
 PAGE: 228 of 228

END OF DOCUMENT