The EQM of a high efficient entangled Photon Source for QKD

Dr. Erik Beckert

Fraunhofer-Institute for Applied Optics and Precision Engineering (IOF) Albert-Einstein-Strasse 7, 07745 Jena, Germany <u>erik.beckert@iof.fraunhofer.de,</u> +49 3641807338

Dr. Rupert Ursin

Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

The Quantum Era

Quantum Technologies–from Knowledge to Applications

[..] our growing ability to manipulate quantum effects [...] is paving the way for a 2nd **quantum revolution**.

European Quantum Manifesto

Quantum technologies [...] will lead to a wave of new technologies that will create **many new businesses** [...] and will be the decisive factor for success in many industries and markets.

Quantum Technologies Flagship Intermediate Report

Entangled Photon Pair Generation by SPDC

Computing	Communication	Sensing/ Imaging			
Correlated Quantum Systems (Qubits) e ⁿ increased computing Power	Communication by Correlation, Entanglement No Deciphering possible	Sensitive Quantum States Entangled Photons			
Decryption Data Bases Beyond-Moore	Tap-proof Communication	Super-Resolution, -Sensitivity Adaption to different λ			
Solid State Platforms Scaling (n)	Fiber-Com Space-Com Systems Development	Application Demonstration			
	Solutions with Light				

Target – Quantum Communication Quantum Key Distribution (QKD)

© Fraunhofer IOF

Yang, X. Ma, C. Peng, and J. Pan, "Entanglement-based quantum key distribution with biased basis choice via free space," Opt. Express 21, 27260-27268 (2013).

IOF

Example – Quantum Communication A typical QKD Layout – Source in Space

A. Fedrizzi et al: High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Physics 5, 389 - 392 (2009)

Adaptive Optics for QKD Satellite Link Point-ahead Compensation

AO-Box to simultaneously compensate UPLINK & DOWNLINK by DOWNLINK measurements

Adaptive Optics for QKD AO Box for Pre- and Post- Compensation

Portable AO Box coupled with any telescope Turbulence mitigation for both Downlink and Uplink Outgoing Uplink is precompensated

6 © Fraunhofer IOF Leonhard, N ; Berlich, R. ; Minardi, St. ; Barth, A. ; Mauch, St. ; Mocci, J. ; Goy, M. ; Appelfelder, M. ; Beckert, E. ; Reinlein, C.: Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication. In: Optics Express 24 (2016), Nr.12, S.13157-13172

Sources for QKD Entangled Photon Source for Space

- Hybrid setup for polarization entanglement
 - Sagnac Interferometer
 - Spontaneous parametric downconversion (SPDC) in bulk periodically poled ppKTP
 - Pumped at 405 nm
- Space suitable for down- (up-)link configuration

Specification	Goal			
Total Mass	≤3 kg			
Total Size	≤ 150 x 150 x 100 mm³			
Total Power Consumption	≤ 10 W (peak)			
Visibility	> 98 % in 0º/90º and +45º/-45º basis			
Detection rate*	0.64e6 photon pair events/s			
	* estimated for 25 mW pumping power			

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. Nam, A. Zeilinger, and R. Ursin, "Highly efficient heralding of entangled single photons," Opt. Express 21, 6707-6717 (2013).

Sources for QKD System Engineering

	Beam Parameters				Calc. efficiency		Est. Exp. Rates		99% TOLERANCE			95% TOLERANCE		
	ζp	ζs	wp/µm	ws/µm	η	pairs/nm	rate	@ 20mW	X/µm	Z/mm	φ/µrad	X/µm	Z/mm	φ/µrad
Optimal Brig	2,84	2,84	18	26	0,75	1,00	1,86	Mcps	2,6	1,0	490,0	5,9	2,5	1100,0
Trade-off 1	1,00	1,60	31	35	0,79	0,86	1,60	Mcps [1]	3,5	1,9	364,0	7,9	4,4	823,0
Trade-off 2	0,55	1,20	42	40	0,85	0,70	1,30	Mcps	4,4	3,2	302,0	10,0	7,3	683,5
Trade-off 4	0,10	0,68	98	53	0,90	0,24	0,45	Mcps	5,3	4,4	240,0	12,0	10,1	544,0
Optimal Her	0,03	0,20	178	98	0,97	0,09	0,14	Mcps [2]	10,0	15,8	127,0	22,6	36,0	288,0

Critical Components

- Temperature control ppKTP
- Fiber collimators

Critical Alignment

- Pump, SPDC and collection mode in crystal
 - Trade-off efficiency vs. tolerances

8

Steinlechner, F.; Vries, O. de; Fleischmann, N.; Wille, E.; Beckert, E.; Ursin, R.: Development of a space-proof polarization-entangled photon source. In: Optical Society © Fraunhofer IOF of America -OSA-, Washington/D.C.: CLEO: QELS Fundamental Science : Part of CLEO: 2016

Sources for QKD From Lab Model to the Engineering Qualification Model

- Lab Model
- Photon Source
- Pump
- Detectors SPC
- Alignment tools

Sources for QKD The EQM – Critical Components

- INVAR Housing
- Electroplated Ni/ Pd/Au
- Defined Thickness 5..10 µm
 - NiP 7,5µm±20%
 - Pd 0,3µm±30%
 - Au 0,01µm -0,06µm

Sources for QKD The EQM – Critical Components

Temperature Control for ppKTP

Fiber Collimators

Technologies

- Simulation based optimization
- Alignment turning
- Soldering of optics
- Flexures for decoupling

Sources for QKD The EQM – First Results

Pump power **4.6 mW**, $T_{ppKTP} = 36^{\circ}C$

V_DA [%] =	96,9837	Error V_DA [%] =	0,0155
V_HV [%] =	99,0565	Error V_HV [%] =	0,0084
Power (in EPS) /mW:		4,60	
Pair-Counts (over 60s):		18992277	
Pair-Counts (per second) =		316538	
Laser diode current /mA:		55,000	
Laser diode NTC /kOhm:		11,000	
Crystal oven NTC /kOhm:		6,265	

Goal parameters:

- → Count-Rate >100.000 s⁻¹
- → Visibility HV-Basis \ge 98 %
- → Visibility DA-Basis ≥ 98 %

Conclusions

Optics enables Quantum Science

KnowHow – Components and Systems for Quantum

(c) ES

Single and entangled Photon Sources

Adaptive Optics

Demonstration

Space-EPS and follow-UP: ARTES 3.4 / ScyLight

Opportunity – Quantum Lab @ IOF, Sources + Free Space Prop.

Fraunhofer IOF – Research for the Future