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Abstract

This paper presents a novel frame acquisition design procedure for the forward link of Ka-band satellite systems. Multi- and single-dwell procedures are considered for continuous and discontinuous
transmission, respectively. To cope with large frequency errors, the detector employs post detection integration and is based on the threshold crossing (TC) criterion. In particular, non coherent and
differential post detection techniques are considered. The design procedure applies to TDM/TDMA networks in general, and it is applied here to the forthcoming DVB-S2 standard.
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Generalized TC procedure Thresholds optimization
Objective: minimization of the mean acquisition time at the
lowest SNR (-2.3 dB)
O CFAR normalization
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