PAGE CONTENTS
Objectives
The objective of the ARTES-10 Phoenix study is to define and assess a technical communication standard based on the existing AMSS protocols for satisfying the requirements of Air Traffic Communication services. The design shall be able to support the technical and operational requirements at the least possible cost for the airspace users and can be operated by a certified CSP.
The objective of Artes-10 is to propose a satellite-based communication system to SESAR compatible with mandatory ICAO provisions, that best answers the user requirements and end-to-end concept of operations, and ultimately to include this satellite communication infrastructure in the SESAR ATM Master Plan.
In order to achieve this, an open communications standard which can be deployed world-wide, whilst meeting the stringent performance requirements of ATS/AOC services, is needed. Phoenix also looks at the aircraft avionics that could implement this standard, whilst being small and cheap enough to be acceptable to the end users, and the ground segment architecture that is flexible enough to maintain the autonomy of the ANSPs.
The other objective was to provide preliminary data to support the preparation of a programme proposal for Phase II, for decision at the Ministerial Conference 2008.
Challenges
The satellite communication system studied was intended to provide point-to-point and broadcast voice and data communications services for ATC and AOC as one potential component of the future dual-link defined by SESAR. The challenges of designing such a system arise from some specifics of the ATM context.
The main difficulty was seen in satisfying the two most important, but competing, requirements, namely to achieve the high reliability required for a safety-of-life service while at the same time assuring low costs.
Another key issue which has a major impact on the entire system is the question of the utilisation of the satellite link for the different type of services in each type of airspace (Airport, En-Route, Oceanic Remote, Polar, and Terminal Manoeuvring Area). The high number of short messages foreseen in the future, requiring short delivery times, placed high demands on the future communications system.
Plan
There were three main tasks within the Communication System Design Study:
- Communications System Architecture definition,
- Communications System Preliminary Design,
- Preparation of Future Work,
The work started on the system architecture and preliminary design in March 2008, and the completion of all work was shown at the Iris final public presentation, which took place on 6th February 2009.
Current Status
The Astrium Services led consortium kicked-off the Artes-10 “Phoenix” – Communication System Design Study (Phase A) based on the selection of a modified AMSS based starting point.
Work was performed to investigate the modifications required to the AMSS standard in order to meet the requirements. The modifications required to meet the COCR requirements include:
- Introduction of higher channel rates,
- More powerful error correction (turbo coding),
- Examination of handover mechanisms.
The work on the aircraft avionics focused on a design able to give a significant reduction of cost, size and power, as well as addressing integration issues on-board the aircraft.
The ground segment examined the options of centralised and distributed GES architectures allowing ANSPs to maintain their autonomy. The impact of this added complexity on the ground segment elements as well as the operation was studied.
A cost assessment of the modified system, as well as a technology roadmap and risk assessment were presented as part of the study. Finally, the commercial aspects and future work plan were presented.
The project was concluded at the internal final presentation at ESTEC in advance of the Public Presentation of the Iris programme on Feb 6th 2009.

