Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • OPEN REPROGRAMMABLE SPACE INFRASTRUCTURE TESTBED FOR BEYOND 5G (B5G) END-TO-END SOLUTIONS AND SERVICES (ARTES 4.0 SPL 5G/6G 3E.019)

    The objective of the activity is to develop and test a reprogrammable testbed in space to permit the experimentation of Beyond 5G (B5G) satellite features and capabilities and enable technology verification and demonstration; rapid validation of end-to-end solutions and services, following the principles of continuous development/continuous integration. B5G satellitefeatures will be implemented in the testbed as part of the activity to demonst…

  • IMPLEMENTATION OF SOFTWARE MITIGATION SOLUTIONS FOR RADIATION-INDUCED SINGLE EVENT EFFECTS (ARTES 4.0 AT 5C.490) - RE-ISSUE OF ITT 1-11734

    The objective of the activity is to de-risk software mitigation techniques for radiation effects on a family of high-performance processors embedded in System on Chip (SoC) components. The activity will identify, on one or more processors of interest for the industry, radiation-induced failure modes and will implement appropriate software mitigation techniques with reuse or development of small FPGA IPs if needed. Targeted Improvements: Enable…

  • QUANTUM RESISTANT KEY EXCHANGE AND AUTHENTICATION MECHANISM FOR 5G NON-TERRESTRIAL NETWORKS (ARTES 4.0 SPL 4S 3D.026)

    The objective of this activity is to identify, analyse and test post quantum cryptographic solutions that are suitable for 5G Non-Terrestrial Network (NTN) key exchange and authentication. The activity will develop a testbed to implement and test identified post quantum cryptographic solutions.

  • SPIN-IN OF SLIPRING TECHNOLOGY FOR SATCOM APPLICATIONS (ARTES AT 4E.096)

    The objective of the activity is to select an off the shelf European slipring technology for terrestrial applications and demonstrate its suitability for Satcom applicationTargeted Improvements: Improving by 20% of power density, lifetime, mass, volume, and lead time.Description: Solar Array Drive Mechanism (SADM) require complex slip-ring technology often leading to long delivery times. However, slipring technologies for terrestrial applicati…

  • ON-CHIP ACTIVE RECONFIGURABLE FILTERS FOR 5G PHASED ARRAY ANTENNAS (ARTES 4.0 SPL 5G/6G 7A.076)

    The objective is to develop and test a Ku or Ka band transparent phased array antenna to provide broadband connectivity on board cars. Targeted Improvements: Develop a new class of phased array antennas for cars able to guarantee a seamless broadband connectivitywith LEO satellites. Description: There is today a significant interest to provide broadband connectivity to cars. This request is associated to the need to guarantee emergency service…

  • SOFTWARE SIMULATOR FOR AIR/SPACE TRAFFIC MANAGEMENT VIA SATELLITE FOR HYPERSONIC SPACE PLANES (ARTES 4.0 4S SPL 3A.155 / 4S.013) - EXPRO+

    Objective: The objective of the activity is to design and develop a physical layer simulator in order to assess the communication needs, and develop a system concept to support air/space traffic management considering emerging transport means such as hypersonic space planes. Targeted Improvements: Enabling communications for a future European Air/Space Traffic Management System in support of hypersonic space planes. Performance improvement wit…

  • HIGH POWER AMPLIFIER FOR THE OPTICAL L-BAND (1565 - 1625 NM) (ARTES 4.0 SL SPL 5G.043)

    The objective of the activity is to develop an elegant breadboard of a high-power optical amplifier operating in L-band.TargetedImprovements:Enable access to spectrum in the optical transmission window(s) beyond the conventional C-band.Description:To date amplifiers in the optical L-band generate relatively low output power, which reduces their usefulness for high bandwidth data transmission. The activity will develop technologies to enhance t…

  • CHARACTERISATION OF ATMOSPHERIC TRANSMITTANCE AT WAVELENGTHS TO BE USED IN TERABIT OPTICAL COMMUNICATIONS (ARTES 4.0 SL SPL 6C.053)

    The objective of the activity is to characterise narrow attenuation lines (due to absorption or scattering) in the optical C-band (and ideally L-band) and to evaluate their effect on the communication performance of terabit-per-second feeder links. The activity will develop a testbed to perform measurements and to compare them against existing models. Targeted Improvements: 100% reliability improvement of terabit per second optical communicati…

  • SUPPORT TO QUIC STANDARDISATION (ARTES FPE 1D.019)

    Satellite communication links have specific characteristics that undermine the performance of commonly used Internet protocols, notably TCP, in part because performance over satellite was not a major consideration during the development of those protocols. Specifically, the long propagation delay imposed by GEO satellite links and their asymmetric nature lead to poor TCP performance. Unless addressed, this can result in a poor user experience,…

  • SPATIALLY COMBINED 40 W - 60 W Q-BAND SOLID STATE POWER AMPLIFIER (ARTES 4.0 AT 5C.494)

    The objective of this activity is to develop, manufacture and test a highly efficient Q-band spatial power divider and combiner forapplication in Q-band Solid State Power Amplifiers (SSPA). Experimental performance verification shall be carried out on a 40 - 60 W (nominal operating point) Q-band SSPA breadboard. Targeted Improvements: Improved power added efficiency of 5 - 10% of Q-band SSPAs in comparison to the state of the art. Description:…

  • ELECTROMECHANICAL MULTILINE THRUSTER SWITCHING UNIT FOR ELECTRIC PROPULSION (ARTES AT 4F.171)

    The objective of the activity is to design, manufacture and test a thruster switching unit facilitating the connection of multiple electric propulsion thrusters to one or more power processing units for redundancy or configuration purposes optimising the system architecture.Targeted Improvements: - Improved efficiency (10% increase with respect to solid state solution).- Increased reliability with respect to a relay-based solution.- Reduced le…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: SCINTILLATION MITIGATION TECHNIQUES BASED ON FEMTOSECOND PULSES FOR OPTICAL FEEDER UPLINKS (5G.014/SL.033) (ON DELEGATION REQUEST)

    Objective:The objective of the activity is to develop scintillation mitigation techniques based on femtosecond pulses for optical feeder uplinks. Their performance will be experimentally verified using the fine acquisition sensor on Alphasat's laser communication terminal.Targeted Improvements:25dB link budget improvement under strong turbulence conditions.Description:The adoption of optical feeder links will largely depend on their abili…

  • OPTICAL GROUND STATION NETWORK TESTBED (ARTES 4.0 SL SPL 6B.128)

    The objective of this activity is to develop an optical ground station network testbed to which parties can connect their ground station and prototype network-related aspects for optical and quantum communications in an operational network environment. Targeted Improvements:Reduction of manual link planning and analysis effort. Testing and simulation capabilities for optical end-to-end data delivery. Description:The objective of this activity…

  • Q/V BAND PHASED ARRAY ANTENNAS FOR GROUND TERMINALS (ARTES AT 7C.070) (ON DELEGATION REQUEST)

    The objective of this activity is to develop and test a receive Q-band prototype, and a transmit V-band beamformer, both supporting2 beams scanning in a large field of view for the mobility market (e.g. aeroplanes, buses, trains). Targeted Improvements:Enabling technology for Q/V band user terminals for the mobility market (aeroplanes, buses, trains). Description:Today, terminal antennas are mainly exploiting the Ka- and the Ku-frequency bands…

  • SECURE SATCOM MODULE IN SUPPORT OF GLOBAL NAVIGATION SATELLITE SYSTEM SERVICE DELIVERY AND ROBUSTNESS (ARTES 4.0 SPL 4S 3A.196) (ON DELEGATION REQUEST)

    The objective of the activity is to design+ develop and manufacture a ground-based breadboard module allowing existing and auxiliary data from/linked to GNSS services to be securely delivered to their users via satellite communications using a secure protocol.

  • PROTOCOL FOR 5G INTEGRATED NETWORKS TO ENHANCE RELIABLE POSITIONING (ARTES 4.0 SPL 5G/6G 3F.024)

    The objective of this activity is to design and develop a simulation testbed for secure delivery of assistance data with5G satellite networks to enhance positioning.Targeted Improvements:Foster the use of 5G satellite networks to enhance positioning with ubiquitous, reliable, and secure delivery of assistance data. Enable secure time and frequency synchronisation in existing or future telecommunication infrastructure.Description:Various positi…

  • IN-ORBIT EXPERIMENT OF HIGH-PERFORMANCE DATA TRANSPORT, SWITCHING AND PROCESSING TECHNOLOGIES FOR TELECOM APPLICATIONS IN LOW EARTH ORBIT (ARTES AT 3E.017) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and perform an in-orbit experiment of high-performance data transport, switching and processing technologies consisting of several key building blocks like processors, mass memory, switches and optical interconnects, allowing a data throughput of up to 10 Terabit per second to enable future high performance telecommunication applications. Targeted Improvements: Improvement by a factor of two…

  • SOFTWARE EXECUTION ENVIRONMENT FOR INTELLIGENT APPLICATIONS (ARTES AT 4G.047)

    The objective of the activity is to develop and test a configurable execution environment for an intelligent platform data handlingsystemTargeted Improvements:- 30% improvement of the performance of autonomous applications.- 50% reduction of the applicationsoftware integration and validation efforts.Description: The increase of processing power onboard spacecrafts will allow the implementation of intelligent functionalities such as early fail…

  • IP-CORE DEVELOPMENT FOR CCSDS-BASED OPTICAL PAYLOAD DATA RECEIVERS (ARTES 4.0 SL SPL 3C.047)

    Objective: The objective is to design, implement and test the IP Cores of the receiver for the coding and synchronisation layer of the two CCSDS telemetry waveforms for optical communications. Targeted Improvements: New market opportunities for optical terminal and equipment manufacturers, addressing both photon-starved links up to 8Gbps and high data rate links up to 10Gbps. This activity will target to reduce by 50% the development costs in…

  • LUNAR OPTICAL COMMUNICATION PHOTON COUNTING RECEIVER (ARTES 4.0 SL SPL 6C.018)

    Objective: The objective of the activity is the development and testing of an receiver for lunar optical communication in a photon starved regime. Targeted Improvements: Photon-starved optical communications data and tracking receiver with 8 times increased bandwidth (1 ns versus 125 ps). Description: A photon-counting detector receiver package for free-space communications between a lunar satellite and Earth-based ground terminal does not exi…

  • PROTECTION OF SATELLITE COMMUNICATIONS GROUND SEGMENT FROM INTERFERENCE/JAMMING INITIATED FROM LEO CONSTELLATION(S)  (ARTES 4.0 SPL 4S 3D.030)

    The objective of the activity is to examine the potential threat of New Space constellations to form a botnet able to generate intentional interference for other communications satellites, and to propose and assess relevant mitigation mechanisms.

  • W-BAND 100W CLASS WAVEGUIDE HIGH POWER ISOLATOR (ARTES AT 5C.517)

    The objective of this activity is to design, manufacture and test a 100W W-band waveguide high power isolator engineering model forfeeder link applications.Targeted Improvements: Enabling technology development for W-band feeder links not existing today in ESAMember States.Description: The usage of the spectrum available in W-band for satellite communications offers the opportunity to reduce the number of gateways in the ground segment. For su…

  • SOLAR ARRAY TO POWER DIRECTLY AN ELECTRICAL PROPULSION SYSTEM (ARTES AT 4F.163) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test coupons to pave the way for high-power, high-voltage solar arrays (e.g., 300 Vplus) feeding directly electric propulsion systems. Targeted Improvements:- Increased solar array output voltage from 100V to at least 300V for high power solar arrays.- Enabling direct feed of solar array power to electrical propulsion systems. Description: Inorder to feed power generated by solar arrays directly…

  • POWER EFFICIENT 75W CLASS SOLID STATE POWER AMPLIFIER MODULE FOR ACTIVE ANTENNA APPLICATIONS (ARTES AT 5C.519)

    Objective: Power efficient 75W class solid state power amplifier module for active antenna applicationsTargeted Improvements: - Reduced mass and volume by more than 50% compared to travel wave tube amplifiers.- Increased power efficiency by 20% in comparison to current state of art, reaching at least 40% PAE at the nominal operation point in Ku-band or 35% in Ka-bandDescription: Satellite telecommunication systems have experienced an evolution…

  • GREEN RECEIVER ARCHITECTURES AND TECHNOLOGIES FOR SATELLITE TV BROADCAST AND BROADBAND SERVICES (ARTES 4.0 AT 7B.073) - RE-ISSUE

    The objective of this activity is the design, development and test of a more energy efficient receiver hardware architecture at system level. The activity shall include the investigation of more efficient receiver hardware design, use of narrower time slices and waveforms aimed at reducing demodulator complexity and produce a breadboard prototype.Targeted Improvements:50% energy reduction in receivers in TV broadcast and broadband user termina…