Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • ATMOSPHERIC TURBULENCE EFFECT MITIGATION BY SECONDARY MIRROR ACTUATION (ARTES 4.0 SL SPL 6C.020)

    Objective: The objective of this activity is to simplify optical feeder links systems in Optical Ground Stations by replacing the secondary mirror with an active (deformable) one and to demonstrate the improvement in transmission budget and complexity. Targeted Improvements: 30% increased optical throughput in optical communication ground stations. 20% reduction of complexity in adaptive optics and beam pre-distortion in feeder-link systems. R…

  • MACHINE LEARNING TECHNIQUES FOR DATA RATE REDUCTION (ARTES AT 7B.079)

    The objective of this activity is to design, implement and test Machine Learning (ML) and Artificial Intelligence (AI) based data rate reduction techniques for ground terminals. A testbed will be developed to assess performance savings in terms of throughput, complexity and power consumption.Targeted Improvements: Decrease the transmitted data rate by at least 40% for specific applicationsDescription: Many types of data transmissions and recep…

  • ARTES 4.0 SPL 4S 3A.199 RADIO RESOURCE MANAGEMENT TECHNIQUES FOR JAMMING MITIGATION IN NGSO CONSTELLATIONS

    The objective of the activity is to design, develop and test jamming mitigation strategies for NGSO broadband secure systems based on adaptive radio resource management algorithms.

  • NUTATION BASED FINE TRACKING SYSTEM FOR SPACE OPTICAL COMMUNICATION TERMINALS (ARTES 4.0 SL SPL 5F.049)

    Objective: The objective of the activity is to develop a fine tracking system with reduced complexity and size. The fine tracking of optical communication terminals shall be based on Rx-fibre or Rxbeam nutation for probing the point spread function at the focal plane and will replace the need for a tracking sensor. Targeted Improvements: Reduce the size weight, power and cost of space opticalcommunication terminals by 30%. Description: Nutatio…

  • SOLAR ARRAY TO POWER DIRECTLY AN ELECTRICAL PROPULSION SYSTEM (ARTES AT 4F.163) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test coupons to pave the way for high-power, high-voltage solar arrays (e.g., 300 Vplus) feeding directly electric propulsion systems. Targeted Improvements:- Increased solar array output voltage from 100V to at least 300V for high power solar arrays.- Enabling direct feed of solar array power to electrical propulsion systems. Description: Inorder to feed power generated by solar arrays directly…

  • DRAG AND ATOMIC OXYGEN RESISTANT CARBON FIBRE REINFORCED POLYMER FOR VERY LOW EARTH ORBIT TELECOM SATELLITES (ARTES AT 4A.092) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a coating material (e.g. for substrates such as carbon fibre reinforced polymer, polymers, etc) with improved atomic oxygen and drag resistance to be used on the external satellite surfaces for very low Earth orbit applicationsTargeted Improvements:- Enabling technology not existing today; allowing telecommunication satellites with conventional construction materials in much lower orbits tha…

  • POWER MODULE FOR AUTONOMOUS SATELLITES (ARTES AT 4F.095)

    The objective of the activity is to design, manufacture and test a power module that will be integrated in an autonomous spacecraftarchitecture.Targeted Improvements:Increase the level of onboard autonomy by 50% at overall platform level.Description: Current satellite operations require human intervention from ground, resulting in considerable inefficiencies and dependencies on communication window frequency, latency, and available resources,…

  • EUROPEAN CHIP INDUCTOR FOR POINT OF LOAD CONVERTERS IN TELECOMMUNICATION SATELLITES (ARTES 4.0 AT 5C.499)

    The objective of the activity is to design, manufacture and test surface mount chip inductors enabling low voltage (down to 0.8 V range) stability, fast transient response, high-speed switching capability and efficient power conversion of point of load(POL) converters, as needed for next generation digital integrated circuits in telecommunication satellites.Targeted Improvements:- Enablinga European source.- 20% mass and volume reduction and 2…

  • RESILIENT AND SECURE MULTIMEDIA COMMUNICATIONS FROM UNMANNED AERIAL/MARITIME VEHICLES USING MULTIPLE UNRELIABLE NETWORKS (ARTES 4.0 4S SPL 3A.172) (ON DELEGATION REQUEST)

    The objective of this activity is the design and demonstration of network protocols that can use multiple unreliable satellite and terrestrial networks for increased resilience and security for retrieval of multimedia data with multiple QoS classes from drones and unmanned maritime vessels. Targeted Improvements: This technique will allow at least 50% increase in the number of UAVs (Unmanned Aerial Vehicles) that can be supported in the same s…

  • IN-ORBIT EXPERIMENT OF A VLEO SATELLITE TO ENABLE PRECISE ORBITAL MODELLING AND SYSTEM SIZING (ARTES AT 3E.026) (ON DELEGATION REQUEST)

    The objective of the activity is to develop high fidelity models to allow the mission design of satcom constellations in VLEO. An in-orbit experiment will be designed and manufactured to measure key geographically and time dependent atmospheric parameters (density, radiation, ionospheric, chemical composition etc..) as well as satellite flight parameters (including drag, solar cells efficiency, etc..). These measurements will enable the precis…

  • L-BAND GALLIUM NITRIDE LOW NOISE AMPLIFIER-BASED RF FRONT-END (ARTES AT 5C.465) (ON DELEGATION REQUEST)

    The objective of the activity is to design a compact L-band RF front-end for telecom applications which is based on a GaN Low NoiseAmplifier (LNA). A breadboard of a GaN microwave monolithic integrated circuit will be developed and tested. The RF front-end including the filtering function shall be modelled.Targeted Improvements: up to 30% mass and volume saving of the RF front-end (LNA and filtering) and 20 dB improvement of the LNA dynamic ra…

  • 500 AMPERE CLASS POWER UNIT FOR ONBOARD PAYLOAD SIGNAL PROCESSING HARDWARE IN COMMUNICATION SATELLITES (ARTES AT 5C.516)

    The objective of this activity is to design, manufacture and test a 500A class power unit capable of supplying DC power for both large on-board and AI processors for use in communication satellites.Targeted Improvements: Improved current supply capability of voltage regulators by a factor of ten enabling the use of high performance AI processors (GPUs and TPUs) in future telecom satellites.Description: Artificial Intelligence (AI) processors,…

  • MASS PRODUCTION THRUSTER TESTING TECHNOLOGY (ARTES AT 4B.175) (ON DELEGATION REQUEST)

    The objective of the activity is to develop a concept for efficient testing of thrusters for large constellations that reduces the test-setup complexity and test duration by an order of magnitude. The concept shall be implemented and experimentally validated in ascalable testbed for high volume testing of the electric propulsion systems. Targeted Improvements: Increase the number of electricthrusters (minimum of 4 to 8) to be tested simultaneo…

  • SPARSE TRANSMIT KA-BAND ACTIVE PHASED ARRAYS FOR GROUND TERMINALS CONNECTED WITH SATELLITES IN DIFFERENT ORBITS (ARTES AT 7A.077)

    The objective of this activity is to develop and test a Ka-band sparse active transmit antenna breadboard and associated beamforming network for ground terminals to be connected with satellites in orbits ranging from geostationary orbits to low earth orbit orbits. Targeted Improvements: - 25% reduction in the number of active controls.- 5% increase in the DC-to-RF power efficiency at antenna level, due to the reduced exploitation of amplitude…

  • BACKGROUND LIGHT AND ATMOSPHERE METROLOGY FOR QUANTUM KEY DISTRIBUTION AT URBAN LOCATIONS (4S SAGA)

    Development of tools and hardware and the execution of a measurement campaign for background light and atmosphere conditions for Quantum Key Distribution (QKD) at urban location (major cities and metropolitan areas) under ARTES 4.0 Space Systems for Safety and Security (4S) Strategic Programme Line. These measurement results are an important check point to validate the design of the SAGA system. The background light and atmosphere metrology ac…

  • HIGHLY EFFICIENT 20 W S-BAND AMPLIFIER FOR 5G-CONNECTED CARS (ARTES 4.0 SPL 5G/6G 7C.082)

    The objective of the activity is to design, manufacture and test a highly efficient 20 W S-band Power Amplifier.Targeted Improvements:Efficiency higher than 70% - enabling technology for S-Band automotive applications.Description:Recent studies have shown the potential of satellite communications for 5G-connected cars. Although various frequency bands may be envisaged, the S-band can offer a simple systems architecture as well as a satisfactor…

  • ARTES 4.0 SPL 4S 7B.077 - EMERGENCY LIGHTS FOR CARS IN DISTRESS WITH INTEGRATED TERRESTRIAL AND SATELLITE CONNECTIVITY (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a prototype of the emergency car light device with direct to satellite communication capability in an emulated environment in laboratory.Procurement Policy: C(1) = Activity restricted to non-prime contractors(incl. SMEs). For additional information please go to:…

  • ION THRUSTER GRID IMPEDANCE MEASUREMENT DEVICE FOR IN-FLIGHT THRUSTER HEALTH MONITORING (ARTES AT 4B.182)

    The objective of this activity is to extend the thruster lifetime and optimise the operating point of the thruster and to develop afinite element model of the grids system together with the plasma in between to allow health checks.Targeted Improvements:- 20%increase in thruster lifetime.- 20% decrease of grid thruster failure probability (erosion).Description: Telecom platforms couldbenefit from gridded ion thrusters in the near future, but c…

  • LESS THAN ONE WATT STANDBY ON-OFF POWER SWITCHING FRONT END FOR TELECOM UNITS (ARTES 4.0 AT 4F.164)

    The objective of the activity is to develop, manufacture and test an on-off power switching front end for all platform units, consuming less than 1W when set in standby mode and capable to turn on the unit power converter with a command sent over the power bus.Targeted Improvements:- Reduction of 15% of the platform harness mass, of the AIT operations.- Reduction of the unit mass by 10% and of platform dissipation by 30%-50%.- Simplification o…

  • HIGHLY INTEGRATED TRANSMIT AND RECEIVE DIRECT RADIATING ANTENNA ARRAY BASED ON MM-WAVE SILICON TECHNOLOGIES AND PACKAGING (ARTES AT 5B.241)

    The objective of the activity is to develop a highly integrated, scalable Ku or Ka-band TX/RX direct radiating array, for versatileconnectivity missions in low earth orbit. Critical breadboarding will be carried out, levering the advances in Mm-wave silicon technologies and advanced packaging techniques to achieve a high degree of integration. Targeted Improvements: Enabling highly integrated combined transmit and receive active antenna with a…

  • MULTI-PLATFORM DUAL BAND CONFIGURABLE POWER AMPLIFIER FOR AVIONIC TERMINALS (ARTES AT 7C.052) (ON DELEGATION REQUEST)

    Objective: The objective of the activity is to develop, manufacture and test a breadboard of a L- and C-band configurable power amplifier to enable dual band operation of avionic terminals. It shall demonstrate 200W peak power per channel and a 10dB dynamic rangewith a constant average power added efficiency of at least 50% for both bands, without compromising linearity performance. The breadboard shall include driver, main and peak amplifier,…

  • SINGLE-PIECE-PART W-BAND PHASED ARRAY ANTENNA INCLUDING THE PASSIVE RF FRONT-END (ARTES AT 5B.239)

    The objective of this activity is to design, manufacture and test a W-band/E-band phased array antenna including the passive RF front-end taking advantage of additive and hybrid manufacturing techniques in order to reduce its complexity and mass compared to conventional subtractive techniquesTargeted Improvements: 30% mass reduction, removing screws and assembly interfaces.Description: With the multiplication of broadband communication satelli…

  • ADAPTIVE THERMAL CONTROL OF TELECOM SATELLITES (ARTES 4.0 AT 4D.082) (RE-ISSUE)

    The objective of the activity is to develop and test a breadboard of an electrophoretic panel enabling adaptive thermal control on telecommunication spacecraft. Targeted Improvements:-Enabling technology to allow adaptive control of radiative surfaces.-Reduction in heater power of 40% and in radiator size of 30%. Description: Traditional thermal design balances emissivity and absorption parameters based on surface materials and/or coatings sel…

  • MULTIFUNCTIONAL HINGE FOR LARGE ON-BOARD DIRECT SATELLITE-TO-DEVICE ACTIVE ANTENNA ARRAYS (ARTES 4.0 SPL 5G/6G 4E.093)

    The objective of the activity is to develop and test a multifunctional hinge technology to accommodate a large multi panel active antenna array on a spacecraft platform, with integrated sensing to avoid adverse local deflections due to spacecraft dynamics.Targeted Improvements:Enabling technology for very large active antennas with disperse panels to be accommodated on a spacecraft platformfor future 5G/6G (direct to handheld) satellitesDescri…

  • MULTI-PURPOSE QUANTUM KEY DISTRIBUTION RECEIVER FOR OPTICAL GROUND STATIONS (ARTES 4.0 4S SPL 3D.013)

    Objective: the objective of the activity is the development and testing of a multi-purpose ground Quantum Key Distribution (QKD) Optical Receiver including a compact decoding set-up for secure key material generation. Key output is the standardization of interfaces a) from the telescope of the optical ground station and b) to the customer key management system.Targeted Improvements: The main target improvement of this activity is the optimisa…