Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • COMPACT TRIBOLOGY-FREE POINTING MECHANISM (ARTES AT 4E.094)

    The objective of the activity is to design, manufacture and test a tribology-free mechanism breadboard for both platform and payload pointing applications on telecom satellites. The lifetime of the developed mechanism shall be assessed, and endurance testing shall be carried out. Targeted Improvements: Enabling a European source of compact, tribology-free pointing mechanisms with no backlash or friction hysteresis effects. Description: Today p…

  • ROLLABLE AND DEPLOYABLE REFLECT-TRANSMIT ARRAY ANTENNAS (ARTES AT 5B.237)

    Objective: The objective is to develop, manufacture and test a breadboard of a lightweight, rollable, passive reflect-array or transmit-array deployed antenna. This shall operate at L- or Sband and have an aperture area of at least 5 square metre.Targeted Improvements: Enabling technology for large aperture deployable antennas based on a simple, reliable and robust mechanical deployment scheme, not existing today in ESA member states.Descripti…

  • FACETED RECONFIGURABLE REFLECTOR BASED ON REFLECT ARRAY TECHNOLOGY (ARTES AT 5B.242)

    The objective of this activity to design, manufacture and test a Ku- or Ka-band faceted reconfigurable reflect array operating in receive band for reconfigurable coverage applications. RF and thermo-elastic performance shall be experimentally evaluated.TargetedImprovements: - Reduction up to 20% the reflector aperture diameter in comparison to today's shape reflector technology.- Improvement of the directivity performance at the edge of t…

  • 5G NEW RADIO (NR) NON-TERRESTRIAL NETWORKS RELEASE 18 PROTOCOL STACK ENHANCEMENTS (ARTES 4.0 SPL 5G/6G 3F.011)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • SPECTRUM SHARING TECHNIQUES FOR BEYOND 5G (B5G) AND 6G 3D NETWORKS (ARTES 4.0 SPL 5G/6G 3A.185)

    The objective of the activity is to investigate and develop spectrum reuse and sharing techniques for integrated NTN-TN 3D networksthat allow them to pool, share, and rapidly reallocate spectrum on demand among their heterogeneous components/segments. The techniques will be prototyped in a testbed to be implemented as part of the activity.Targeted improvements:Enabling spectrum reuse and sharing in integrated NTN-NT 3D networks.Description:Spe…

  • HIGH EFFICIENCY Q-BAND POWER AMPLIFIER MONOLITHIC MICROWAVE INTEGRATED CIRCUIT FOR ACTIVE ANTENNAS (ARTES AT 5B.238)

    The objective of the activity is to design, manufacture and test a set of highly efficient (minimum 25% power added efficiency) Q-band Monolithic Microwave Integrated Circuits (MMIC) for active antenna applications in GEO, MEO and LEO. The packaged devices will be based on European technology covering the 10 Watt power class (GEO) down to a few 100mWs for LEO applications. Targeted Improvements: Enabling critical building block technology deve…

  • PIONEER PARTNERSHIP PROJECTS (PIONEER 4.0) - OPEN CALL FOR PROPOSAL

    The Pioneer programme, implemented under the ARTES 4.0 Generic Programme Line "Partnership Projects", aims to supports the emergence of Space Mission Providers (SMPs), i.e. commercial entities interested in becoming one-stop-shop service providers for public and private customers. The Open Call for proposals is aimed to offer the opportunity for new companies from across all ESA member statesto participate in the programme. It will b…

  • CYBERSECURITY AUDITING SUITCASE FOR SATELLITE COMMUNICATION NETWORKS ( ARTES 4.0 SPL 4S 3D.024)

    The objective of the activity is to design, develop and test in a representative environment a portable auditing tool prototype to assess VSAT networks security from the wireless interface.

  • EARTH UPPER ATMOSPHERE FORECAST TOOL FOR MISSION DESIGN AND OPERATION (ARTES 4.0 AT 4C.066)

    The objective is to develop a multi-model informed predictive tool of atmospheric parameter variability for mission design and operation.Targeted Improvements:- Enabling a new European tool allowing prediction of atmospheric conditions (e.g., density, composition, radiation) over time, including local state and total dose.- To reduce initial mission design margins hence avoiding overdesign.Description: The recent loss of several communication…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT : DEMONSTRATION OF RELIABLE HIGH DATA RATE OPTICAL LINKS UNDER STRONG ATMOSPHERIC TURBULENCE CONDITIONS (3B.042 / SL.015)

    Objective:The objective of this activity is to demonstrate reliable high data rate optical transmission through the atmosphere (>100Gbps) in a scenario representative (in terms of link attenuation and optical turbulence) of an optical link between a telecom satellite and an Optical Ground Station for elevation angles down to 5deg. Targeted Improvements:Improve the service quality and availability of high data rate optical links through the…

  • KA-BAND RADIO FREQUENCY FRONT-END RESISTANT TO INTENTIONAL INTERFERENCE FOR SECURE TTC (ARTES 4.0 4S SPL 4G.041)

    The objective of the activity is to design, manufacture and test a Scaled Engineering Model of rugged Ka-band RF front-end for secure TTC applications that will enable technologies for mitigation of intentional interference. Targeted Improvements: Ability to operate under severe Radio Frequency Interference. Description: TTC is a key equipment for all satellites since it provides the umbilical cord to the control station(s). It has to operate…

  • INVISIBLE PHASED ARRAY ANTENNA TO PROVIDE BROADBAND CONNECTIVITY ON BOARD CARS (ARTES 4.0 SPL 5G/6G 7C.094)

    Objective: The objective is to develop and test a Ku or Ka band transparent phased array antenna to provide broadband connectivity on board cars. Targeted Improvements: Develop a new class of phased array antennas for cars able to guarantee a seamless broadband connectivity with LEO satellites. Description: There is today a significant interest to provide broadband connectivity to cars. This request is associated to the need to guarantee emerg…

  • 5G NON-TERRESTRIAL NETWORK SECURE TWO-WAY RANGING FOR LEO SATELLITES (ARTES 4.0 SPL 5G/6G 3F.022)

    Study, design and validate a secure two-way ranging protocol relying on 5G Non-Terrestrial Network (NTN) in LEO.Targeted Improvements:Enable secure two-way ranging via future LEO 5G satcom services for target applications such as IoT sensors.Description:All GNSS systems are principally based on one-way ranging and as such they are fundamentally vulnerable to spoofing and/or meaconing attacks, even in the presence of GNSS security mechanisms su…

  • MASS MEMORY UNIT WITH 100 GIGABIT PER SECOND WRITE RATE CLASS FOR LOW EARTH ORBIT COMMUNICATION APPLICATIONS (ARTES AT 5C.498) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test a memory unit breadboard offering interface port and memory read and write speeds at 100 GigaBit per second and a capacity of at least 3 TeraBits for interconnected constellation telecommunication systems. Targeted Improvements: Improvement of the write speed by a factor of 10 compared to FLASH-based mass memories. Description:Future Low Earth Orbit (LEO) constellations with hig…

  • IN-ORBIT DEMONSTRATION OF A NARROW BAND INTERNET OF THINGS (NB-IOT) INTER-SATELLITE DATA RELAY (ARTES 4.0 SPL 5G/6G 3E.023)

    The objective of this activity is to proof that a standardised existing solution such as NB-IOT can be used for satellite-to-satellite low data rate communications. Targeted Improvements: Introduce world's first standardised intersatellite data relay solution based on 3GPP NTN standards, opening up a new market for new companies and telecom operators toprovide data solutions to Earth Observation missions via intersatellite data relay. Des…

  • ATMOSPHERIC TURBULENCE EFFECT MITIGATION BY SECONDARY MIRROR ACTUATION (ARTES 4.0 SL SPL 6C.020)

    Objective: The objective of this activity is to simplify optical feeder links systems in Optical Ground Stations by replacing the secondary mirror with an active (deformable) one and to demonstrate the improvement in transmission budget and complexity. Targeted Improvements: 30% increased optical throughput in optical communication ground stations. 20% reduction of complexity in adaptive optics and beam pre-distortion in feeder-link systems. R…

  • AGILE ULTRA HIGH FREQUENCY (UHF) TO KU-BAND TRANSCEIVER FOR COMMUNICATIONS IN CRISIS SITUATIONS (ARTES 4.0 SPL 4S 7C.092)

    The objective of this activity is to design and develop a UHF/Ku transceiver prototype for communications used by governmental users (i.e.+ first responders) and Non-Governmental Organisations (NGOs) within an area of crisis+ compatible with all Ku-band service providers.

  • MODEL-BASED APPROACH FOR SOFTWARE DEFINED PAYLOAD APPLICATIONS (ARTES AT 5A.089)

    The objective of the activity is to design, develop and test key building blocks for software defined payloads using a model-based approach. At least six building blocks implementing telecommunication application functions (e.g. signal processing, signal filtering, encryption, compression, etc.) shall be developed. At least two use case applications shall be developed, and the performance tested to validate the approach.Targeted Improvements:…

  • FREQUENCY COORDINATION DEMONSTRATOR FOR NON-GEOSTATIONARY SATELLITE SYSTEMS (ARTES AT 3A.153) (RE-ISSUE OF ITT 1-11179)

    The objective of the activity is to develop and test a demonstrator of a frequency coordination system that manages access to spectrum among different non-geostationary satellite systems. The concept will be implemented and tested as a real-time emulator to be developed as part of the activity.Targeted improvements: Improving the achievable throughput by 50% with respect to partitioning the frequency band.Description:The increasing number of c…

  • SOLAR ARRAY WITH LATCHED SHALLOW CURVED SURFACE FOR IMPROVED DEPLOYED STIFFNESS (ARTES AT 4F.161) (ON DELEGATION REQUEST)

    The objective of the activity is to develop, manufacture and test a latch to enhance the deployed stiffness of an existing array, by means of a slight repositioning of panels. Targeted Improvements: Increase the frequencies of the deployed array by 30%.Description: Most telecommunication solar arrays comprise in-line panels, arranged in a row. Some include lateral panels, forming a cross configuration. In the case of the latter, the frequency…

  • ASSESSMENT OF 5G NON-TERRESTRIAL NETWORKS (NTN) WITH SUB-6GHZ TIME DIVISION DUPLEXING (TDD) COMMUNICATIONS (ARTES 4.0 SPL 5G/6G 3F.017)

    The objective is to carry out an assessment of the NTN deployment of the 5G NR air interface in TDD mode and identification of technology gaps and constraints. Develop a software testbed implementing and testing the scenario.Improve the overall spectrum utilisation by up to 50% when using Time Division Duplex communication as per 3GPP standard.The 3GPP has specified for Non-Terrestrial Networks (NTN) the n255 and n256 bands, both operating in…

  • DRAG AND ATOMIC OXYGEN RESISTANT CARBON FIBRE REINFORCED POLYMER FOR VERY LOW EARTH ORBIT TELECOM SATELLITES (ARTES AT 4A.092) (ON DELEGATION REQUEST)

    The objective of the activity is to develop and test a coating material (e.g. for substrates such as carbon fibre reinforced polymer, polymers, etc) with improved atomic oxygen and drag resistance to be used on the external satellite surfaces for very low Earth orbit applicationsTargeted Improvements:- Enabling technology not existing today; allowing telecommunication satellites with conventional construction materials in much lower orbits tha…

  • POWER EFFICIENT USER PLANE FUNCTIONS FOR B5G SMALL SATELLITE PLATFORMS (ARTES 4.0 SPL 5G/6G 3F.016)

    Objective:The objective of this activity is to develop and test a power efficient 5G User Plane Function (UPF) prototype, implemented onto space enabled hardware platforms. The development will leverage concrete laboratory results of various RAN splits and compensate for their impact on the 5G protocol stack. Finally, system integration with a ground segment control plane will be tested, over emulated LEO constellationsTargeted Improvements:-…

  • BREADBOARDING OF CRITICAL TECHNOLOGIES FOR A MULTI-BEAM SATELLITE RECEIVER FOR AIRCRAFT MODE-S SIGNALS (ARTES 4.0 4S SPL 5A.082) (ON DELEGATION REQUEST)

    The objective of the activity is to design, develop and test payload technologies compliant with multi-beam receivers for satellite-based air traffic surveillance. Critical breadboarding will be carried out to demonstrate the concept suitable for use on small satellites in LEO or MEO. Targeted Improvements: 50% reduced payload power consumption, mass and volume compared to current technology.Increase the probability of message detection by a f…