Funding

This page displays the ARTES Invitation To Tenders (ITTs) which are published on ESA-STAR. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.

Funding of the individual Prime or subcontractors, for ARTES Core Competitiveness and ARTES Applications activities, is subject to authorisation of the required ARTES budget by the related National Delegations. Therefore, bidding teams are requested to inform their National Delegation(s) of their intention to participate in funded activities already before submitting a proposal.

The official information platform for providing potential bidders all the relevant documentation and details concerning the intended and issued Invitations To Tender (ITTs) for Open Competitions and Direct Negotiations is ESA-STAR - managed and operated by the ESA Procurement Department.

  • AUTONOMOUS HEALTH MONITORING FOR TELECOMMUNICATION PLATFORM MECHANISMS (ARTES 4.0 AT 4E.089)

    The objective of the activity is to develop and test a computer-assisted approach for in-situ operational health monitoring and anomaly detection for mission-critical platform mechanisms (e.g., reaction wheels, solar array drive mechanisms, antenna pointing mechanisms, laser communication terminals, etc.) in telecommunication spacecraft. Rather than relying on telemetry data, this activity will develop an approach using the full signal and sen…

  • HIGH IMPULSE ARGON ELECTRIC THRUSTER (ARTES AT 4B.181)

    The objective of the activity is to design, manufacture and test an electric thruster using Argon propellant, compatible with the long lifetime and high total impulse requirements of telecommunication satellites in GEO and for constellations.Targeted Improvements:- Novel capability to operate with Argon propellant not existing today.- Improved lifetime and Total Impulse per kW(N.s/kW) by a factor of 2.- Decreased complexity of the thruster arc…

  • EXTENSION OF ELECTRICAL POWER SYSTEM VOLTAGE TO 300V (ARTES AT 4F.146) (ON DELEGATION REQUEST)

    The objective of the activity is to identify, design, manufacture and test critical technology and hardware elements needed for a high voltage electric power system (EPS) for high power telecom applications. This shall include typical primary and secondary DCDC converters and protection circuits (e.g. latching current limiters). Targeted Improvements:- Increase bus voltage up to > 300V, enabling direct drive for electric propulsion;- Reduce…

  • ONBOARD DATA HANDLING SUB-SYSTEM FOR AUTONOMOUS SATELLITES (ARTES AT 4G.044)

    The objective is to develop an onboard data handling architecture capable of autonomously acquiring, processing and interpreting housekeeping and telemetry data and taking the required actions without ground intervention. The activity will develop a data handlingsub-system demonstrator to validate the intelligent functionalities, including prognostic and health management (PHM) capabilitiesTargeted Improvements: Enabling technology development…

  • 10W PER MM CLASS THERMALLY ENHANCED HIGH EFFICIENCY MICROWAVE POWER AMPLIFIERS (ARTES 4.0 AT 5C.491) (RE-ISSUE)

    The objective of this activity is to design, manufacture and test a breadboard of a high-power amplifier in Ku-band or above with 10 W/mm class of power density in continuous wave operation. The selected manufacturing process will allow a smaller chip size with reduced junction temperature, reduced thermal memory effects and improved efficiency.Targeted Improvements:- 3-5 times improvementin power density.- Junction temperature reduction of te…

  • CRITICAL BREADBOARDING ENABLING THE REMOVAL OF FAILED SMALL SATELLITES FROM LOW EARTH ORBIT (ARTES AT 4A.085) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test technologies enabling the removal of failed small satellites (e.g.tumbling) from low earth orbit. Several breadboards will be developed and tested to reduce tumbling and to enable rendezvous and capture.Targeted Improvements: Enabling de-orbiting of large constellations of low Earth orbit telecommunication satellites. Description: In the coming years it is expected that the numbe…

  • FUTURE GEOSTATIONARY AMATEUR SATELLITE COMMUNICATIONS PAYLOAD (ARTES FPE 1A.126) - EXPRO PLUS

    ESA will support an initiative to define a future amateur satellite payload in geostationary orbit. ESA proposes that this activitywill be implemented by a combination of collaborative internal, industrial, and amateur efforts, all within the financial envelope as indicated. The activity shall consolidate requirements from the amateur and commercial satellite industry, trade-off several payload options, address the future user segment, develop…

  • POWER EFFICIENT DESIGN OF RADIO FREQUENCY PAYLOAD ALGORITHMS ON SYSTEM ON CHIP (ARTES AT 5C.513)

    The objective of the activity is to identify and benchmark power efficient radio frequency algorithms on complex System on Chip (SoC) devices. Power efficient algorithms for at least two applications case (e.g. beamforming, decoding/encoding, neural networks...) will be designed, developed and tested and compared to programmable logic only implementation.Targeted Improvements: 50% reductionpower consumption for radio frequency algorithms with…

  • DIGITAL TWIN FOR ON-ORBIT ASSEMBLY AND MANUFACTURING OF VERY LARGE ANTENNAS (ARTES AT 5B.235)

    The objective of the activity is to develop and test a digital-twin for on-orbit assembly and manufacturing of antennas up to 30-50metres diameter. An end-to-end manufacturing process will be selected and guidance, navigation and control techniques for assembly and manufacturing on-orbit will be developed. A simple large reflector antenna will be designed, and assembly and manufacturing will be evaluated with the developed digital twin.Targete…

  • LUNAR LASER COMMUNICATION TERMINAL (ARTES 4.0 SL SPL 5G.045)

    Objective: The objective of the activity is to first design a Laser Communication Terminal (LCT) concept suitable for communicationover lunar distances. In a second step, the activity will develop an engineering model of a CCSDS compatible transceiver with critical functions including coding, synchronisation, and modulation. Targeted Improvements: Enabling a European or Canadian lunar communication terminal operating with a data rate one order…

  • BROADBAND TUNEABLE KA-BAND FREQUENCY MULTIPLEXERS (ARTES AT 5C.430) (ON DELEGATION REQUEST)

    The objective of this activity is to design, manufacture and test two breadboards corresponding to a reconfigurable 4-channel 30 GHz low power Combiner Frequency Multiplexer (CMUX) and a 4-channel 20 GHz low power frequency Demultiplexer (DMUX). Targeted Improvements: Replacement of conventional fixed-bandwidth CMUX and DMUX equipment with a tuneable solution capable of supporting agile traffic management.Description: Current broadband satelli…

  • SPACEBORNE W-BAND HIGH POWER TRAVELLING WAVE TUBE (ARTES AT 5C.486) (ON DELEGATION REQUEST)

    The objective of this activity is to design, develop and test a breadboard of high-power W-band travelling wave tube (TWT) to meet the requirements of Very High Throughput Satellites.Targeted Improvements:Enable a European source of W-band TWT with 5 GHz instantaneous bandwidth, 100 W power output and at least 30% efficiency.Description:High Throughput Satellites (HTS) and Very High Throughput Satellites (VHTS) already use Q/V band frequencies…

  • LARGE ROTATION RANGE, FLEXIBLE PIVOT WITH HOLLOW INNER SHAFT (ARTES 4.0 SL SPL 5B.221) - EXPRO PLUS (ON REQUEST)

    The objective of the activity is to develop a breadboard of a flexible pivot a with large range of rotation angle (goal90 degrees),which features a hollow inner shaft to route an optical beam for optical communications or cables/waveguide in other applications.Targeted Improvements:One order of magnitude improvement in operating lifetime of coarse pointing mechanisms in optical communication terminals compared to ball bearing mechanisms, and a…

  • DISTINCT TRANSMIT AND RECEIVE SATELLITE SYSTEM FOR SIMULTANEOUS TWO-WAY LOW DATA RATE COMMUNICATION SERVICES (ARTES AT 3A.202)

    The objective of the activity is to design a system concept based on distinct transmit-only and receive-only satellites for the user link. The goal is to enable at the system level simultaneous two-way low data rate communication services such as Internet of Things, messaging, and VDES operating in frequency range from VHF to C-band. The system concept will be implemented and tested in an end-to-end system testbed. This includes the user termi…

  • AUTOMOTIVE S-BAND ANTENNA FOR SATELLITE IOT AND 5G TERRESTRIAL COMMUNICATIONS (ARTES SPL 5G 7C.062) (UPON DELEGATION REQUEST)

    Upon Delegation Request (*) The objective of the activity is to develop, manufacture and test an integrated automotive S-band antenna that combines satellite IoT and 5G terrestrial communications. Targeted Improvements: Reduction of antenna form factor from a protruding antenna (e.g. shark fin shape) to planar antenna fully integrated in the car roof. Bandwidth increase from 30 to 90 MHz for satellite and 5G communications. Description: The In…

  • ARTIFICIAL INTELLIGENCE/MACHINE LEARNING FRONT-END MODULE FOR SATCOM 5G/6G INTEGRATED ACCESS-BACKHAUL TRANSCEIVERS (ARTES 4.0 SPL 5G/6G 6B.119)

    The objective of the activity is to develop, implement and test a breadboard of a digital transceiver front-end capable of switching between access and backhaul modes of operation for integrated satcom-terrestrial 5G/6G networks. The transceiver core shall be supported by an AI/ML engine implemented for a set of commercially available hardware and software platforms. The activity shall also provide the testbed to test the AI/ML-based transceiv…

  • ACCELEROMETER FOR DRAG COMPENSATION IN VERY LOW EARTH ORBIT (ARTES AT 4C.069) (ON DELEGATION REQUEST)

    The objective of the activity is to design, manufacture and test an accelerometer for drag compensation in Very Low Earth Orbit (VLEO). Targeted Improvements: - Enabling real time compensation of drag by the propulsion system. - Miniaturisation of instrument by a factor 10 compared to existing payload grade accelerometers. - Increase accuracy by factor 10 compared to existing accelerometers used for orbital control.Description: While intere…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: INTEGRATED OPTICAL INTERFACES FOR RF PHASED ARRAY ANTENNAS (5F.013 / SL.030)

    Objective:The objective of the activity is to analyse and demonstrate the benefits of replacing coaxial cables/waveguides with fibre optics in large RF phased array antennas. The activity shall identify the best technologies to be employed and it will design, manufacture and test 2 breadboard demonstrators covering both analogue and digital transmission.Targeted Improvements:Order of magnitude mass and volume reduction by substituting the pass…

  • SPECTRUM SHARING TECHNIQUES FOR BEYOND 5G (B5G) AND 6G 3D NETWORKS (ARTES 4.0 SPL 5G/6G 3A.185)

    The objective of the activity is to investigate and develop spectrum reuse and sharing techniques for integrated NTN-TN 3D networksthat allow them to pool, share, and rapidly reallocate spectrum on demand among their heterogeneous components/segments. The techniques will be prototyped in a testbed to be implemented as part of the activity.Targeted improvements:Enabling spectrum reuse and sharing in integrated NTN-NT 3D networks.Description:Spe…

  • COMPACT TRIBOLOGY-FREE POINTING MECHANISM (ARTES AT 4E.094)

    The objective of the activity is to design, manufacture and test a tribology-free mechanism breadboard for both platform and payload pointing applications on telecom satellites. The lifetime of the developed mechanism shall be assessed, and endurance testing shall be carried out. Targeted Improvements: Enabling a European source of compact, tribology-free pointing mechanisms with no backlash or friction hysteresis effects. Description: Today p…

  • OPTIMISED VIRTUAL PRIVATE NETWORKS FOR CONSTELLATIONS (LEO, MEO, OR MULTI-ORBIT) AND GEO SPACE NETWORKS ( ARTES 4.0 SPL 4S 3D.031)

    The objectives of this activity are to design, develop and test techniques enabling integration of existing and new VPN solutions suitable for space networks (LEO constellation, MEO constellation or GEO) for the purpose of comparison, performance evaluation and optimisation, while maintaining compatibility with terrestrial networks.

  • CHANNEL ESTIMATION AND ADAPTATION TECHNIQUES FOR Q/V BAND FEEDER LINKS OF LEO/MEO CONSTELLATION (ARTES AT 3B.048)

    The objective of this activity is to design, develop and test channel estimation and adaptation techniques as needed for Q/V band feeder links of LEO/MEO constellation with regenerative on-board processors. An end-to-end system testbed will be developed that includes varying channel, antenna and hardware impairments in the downlink and uplink depending on the elevation angle. The testbed willinclude the baseband, analogue and RF domain to test…

  • 5G NEW RADIO (NR) NON-TERRESTRIAL NETWORKS RELEASE 18 PROTOCOL STACK ENHANCEMENTS (ARTES 4.0 SPL 5G/6G 3F.011)

    The objective of this activity is to develop the software protocol stack for Release 18 enhancements related to 5G New for Radio (NR) for Non-Terrestrial Networks. The software protocol stack development shall be based on a testbed considering both the User Equipment (UE) and g-NodeB (gNB) features and operational procedures.Targeted Improvements:Enable 5G NR NTN system performance simulations with the latest Release 18 modifications.Descripti…

  • ARTES 4.0 SPL OPTICAL COMMUNICATION - SCYLIGHT: RF AND OPTICAL HYBRID GATEWAY ANTENNA (6C.002/SL.024)(ON DELEGATION REQUEST) - EXPRO PLUS

    Objective:The objective of this activity is to investigate a telecom gateway antenna able to work simultaneously in both the RF (Ka- Q/V-Band) and optical wavelengths.Targeted Improvements:This product is currently not available and it would allow a phased migration from RF communications to optical communications.Description:There is a clear trend in the need to increase bandwidth in order to increase the data rate, within the telecommunicat…

  • KA-BAND RADIO FREQUENCY FRONT-END RESISTANT TO INTENTIONAL INTERFERENCE FOR SECURE TTC (ARTES 4.0 4S SPL 4G.041)

    The objective of the activity is to design, manufacture and test a Scaled Engineering Model of rugged Ka-band RF front-end for secure TTC applications that will enable technologies for mitigation of intentional interference. Targeted Improvements: Ability to operate under severe Radio Frequency Interference. Description: TTC is a key equipment for all satellites since it provides the umbilical cord to the control station(s). It has to operate…