Please click on the + symbol to expand the Filter By ARTES Elements to narrow your search. If you are looking for a specific element select from the list provided and click on the Apply button to start the search and display the results.
Since satellite operators aim for more bandwidth to increase data throughput and capacity new system and payload concepts are required, leading also to the demand for new equipment. One promising option to increase capacity for HTS systems is moving the feeder link from Ka-band to Q/V-band. The focus of this activity targets the development of Q-band linearisers.
On-board handling of higher-layer protocols via an ad-hoc router device makes it possible to provide satellite connectivity completely by-passing the (possibly) clogged/compromised terrestrial infrastructure, to facilitate IP mobility, to reduce traffic load on satellite uplinks by deploying IP multicasting on board the satellite, and to provide true packet-by-packet end-to-end connectivity between satellite terminals in meshed configuration or ISL environment.
Low-Earth-orbit (LEO) satellites are flying in an altitude between 200km and 2000km above Earth and hence are limited in the amount of time they are visible to a ground station (typically around 20 minutes). This is limiting the amount of data that can be exchanged. However if the data is relayed to a geosynchronous-Earth-orbit (GEO) satellite, the available LEO satellite data transmission time (and amount of data) can be drastically increased.
This project covers the design and the development of the link and network layer mechanisms required to support end-to-end unicast data connectivity over inter-satellite links in small satellite constellation networks. SPIDER stands for Small Platform Inter-satellite Data Exchange Routes, being an obvious reference to the spider’s ability to create webs, which is precisely the purpose of this project.
Mx-SAT is a C&G Technology project that covers research tracks on efficiency and scalability improvements for the Newtec Dialog® system containing the platform and terminals. The Newtec Dialog® platform is a multiservice satellite communications platform that allows satellite service providers to build and adapt their network easily as their business grows.
This technology phase study aims to develop the Thales Alenia Space generic and highly competitive avionics product for future satellite platforms. It includes OBC-core unit with the rad-hard technologies NG-ULTRA that embeds a R52 quad-core ARM-based MPSoC and the largest space FPGA.
The OBC-core constitutes, together with the modular Avionics Centralized Electronics and High Power Unit, the backbone of Thales Alenia Space future avionics.
VIBeS project addressed the design, prototyping and validation of Virtual PEP agents to efficiently support the satellite-terrestrial convergence in upcoming 5G scenarios. The proposed approach leverages both NFV technology and cutting-edge web protocols. To assess the proposed solutions, a highly configurable Proof-of-Concept testbed was developed and tailored for the experimentation of broadband services aligned with 5G use-cases and verticals.
The Airbus Next Generation Solar Array (NGSA) is based on a hybrid solar array concept which combines rigid backbone panels with lightweight semi-rigid lateral panels. This ARTES 5.2 project covers the low TRL development activities for the main components of the new Solar Array layout, such as mechanical components to accommodate and release the semi-rigid substrates, semi-rigid PVA design, system level design and analyses as well as the design and engineering testing of the panel stack.
In HENCSAT we have developed a novel concept based on bit-torrent and network coding technologies that provides more resilient networking that can be loaded closer to its full capacity.
HENCSAT empowered the study and testing of robust and powerful networking over heterogeneous satellite and radio links in potentially difficult mobile scenarios where packet loss and interruptions may occur. By applying Network Coding in combination with novel resource management significant improvements can be obtained over traditional approaches. Application areas include aerial, vehicular and maritime users with sources like photos, video and other critical data. The focus was specifically on video over multiple networks.
The project consists in advanced activities paving the way to NewSpace equipment, intended to cover the platform needs in terms of electronics. The key success factors are a drastic reduction of recurrent price and mass of the equipment based on three pillars : integration & standardization, low cost components and innovative technologies.
The mission of RHEA Cyber Security Centre of Excellence is to develop supporting technologies enabling agile and effective cyber-security services, including education and training, operations, research, experimentation, test & evaluation, supporting the needs of the European space community as well as the wider aerospace, humanitarian, critical infrastructure, and defence & security communities.
Thales Alenia Space is a major player in the LEO, MEO, HEO GEO, L2 or interplanetary satellite industry and has therefore a large background in systems and subsystems definition.
In particular, Thales Alenia Space is developing a new product line of geostationary telecommunication satellites, Spacebus NEO, more and more powerful where harness accommodation is already challenging.
The study of a new harness architecture based on a large flexible printed circuit board, associated connectors, intelligent connectors integrating multiplexing and demultiplexing functions will ease the harness accommodation for telecommunications payloads.
The objective is to identify on-board transmitter and receiver technologies that enable two-way VHF data exchange via Low Earth Orbit Satellite, according to the emerging VDES specifications.
Design, development and demonstration of innovative gateway and user terminal prototypes enabling a vast variety of Internet of Things (IoT) use cases and able to efficiently provide bi-directional Machine-to-Machine (M2M) services in GEO and non-GEO scenarios for both fixed and mobile applications.
The project’s outcomes deals with the design, implementation and validation of a satellite gateway able to receive and manage the traffic transmitted by a large population of terminals asynchronously transmitting short messages with low duty cycle via a satellite communication channel.
The M2M market is increasing fast and more bandwidth is required. Ku-band M2M services can offer this bandwidth but require low-cost front-end components to be accepted by the market. The SiGeM2M project is demonstrating the implementation of the complete front-end transmitter functionality in a low-cost and low-power SiGe RF IC.
Design and development of a prototype of a low profile aeronautical dual frequency band antenna designed for both Aeronautical Mobile Satellite (Route) Service (AMS(R)S) air-traffic management and other existing aircraft applications.
CODYSUN aims at investigating the benefits of new, forward looking dynamic spectrum access techniques, over currently existing methods to share spectrum among satellite services.
Development of a Heat Controlled Accumulator (HCA) for two-phase Mechanically Pumped Loops. The HCA is apart from an expansion vessel also able to control the evaporation temperature of the MPL P/L heat exchangers.
This project is aimed at the development of low-profile and low-cost hybrid mechanical-electronic steerable antenna concepts that will allow reception of the signal transmitted by Ku-band geostationary satellites to cars and other vehicles.
Using three proofs-of-concept this project shows how the application of Machine Learning and Artificial Intelligence techniques in the domain of satellite communications can offer improved performance and reduced operations costs.
Solid lubrication in ball bearings was an issue since the ceasing of DUROID5813. The aim of the SLPMC2 project was to develop a fully European material for cages in solid lubricated ball bearings. Several compositions were designed, manufactured and tested up to ball bearings. The best performing material showed lower torque as competitive materials. It will be produced by ENSINGER as TECASINT TSE 8591.
The objective of this project is to develop new functionalities on the new generation of miniaturised cameras. New features will be implemented on the MCAMv3 in order to boost the versatility of the existing design.
The project concerns the development of an L-band High-Power Dual-Polarization Feed Chain, mainly intended for future Mobile Satellite Services (MSS) satellite antennas. Radiating element and diplexers are integrated in the feed chain to allow simultaneous operation in receive and transmit mode. Envelope and mass shall be minimized to allow cluster arrangement in large, multiple beam, array fed reflector antenna architectures.
Lacuna Space Ltd provides a simple and reliable global connection service that links physical devices, such as temperature sensors and location trackers, to the internet. It uses low-orbit satellites which connect the devices to its network, enabling monitoring even in the most remote areas.
Aim of this project was the design of two GaN down-converter mixers with very high linearity. One mixer was a Ku-band mixer, the other one a Ka-band mixer. Both mixers have integrated baluns and an integrated LO drive amplifier. As GaN foundry supplier OMMIC (France) was used. The complete project duration was 24 months.
In this activity we perform a preliminary design of possible hybrid antenna solutions for future mobile terminals. The best solution is designed in detail. A demonstrator of the antenna is manufactured and tested to validate the most critical aspects of the design and the expected capabilities.
OrbAstro has matured the requirements for a Flocking Module, a sub-1U onboard plug-in module that wholly enables active formation flight and autonomous flock-level management for constellations/clusters of nanosatellites. OrbAstro built the simulation tools to stress-test these requirements, developed the associated K-/Ka-band RF subsystem to EM level, and carried out mission analyses to verify the value added by the Flocking Module.
First steps in the development of a hybrid structure with high thermal conductivity has been completed. The structure, consisting of stacked graphite foils sandwiched between aluminium sheets with integrated hooks, can replace currently used two- phase heat transportation systems with associated mass and cost savings. Deletion of two-phase systems improves in addition thermal control system testing.
OFDM techniques are currently well established in terrestrial mobile networks but have not found up to now significant use in the space community. The project had an exploratory nature evaluating possible advantages of OFDM-like waveforms in broadband satellite applications.
To design and validate a joint BLoS (Beyond-Line-of-Sight) and LoS (Line-of-Sight) air interface for the command and control of UAVs in the 5030‐5091 MHz band, implement a UAV terminal prototype and to present a waveform design for standardization in the relevant bodies.
The study aims at identifying and analysing the opportunities that in-orbit servicing, assembly, and manufacture may bring to the satcom sector from a technical and business perspective - excluding active debris removal. Good innovation and development roadmaps are mandatory outcomes but they must be linked to credible business cases where total costs are exceeded by the financial benefits to operators.
This project demonstrates the feasibility of a fully software-defined satellite gateway/teleport implementation scalable to support handling of 5 GHz instantaneous RF bandwidth based on cloud technology and generic processing hardware. The DVB-S2/S2X/DVB-RCS2 modulation and demodulation is performed by processing of digitized I&Q samples on general x86 CPU hardware with cloud technology, without the use of FPGAs or GPUs.
QuadSAT’s project offers the satcom industry a dynamic new way to test antennas, by utilizing advanced drone and radio frequency technology. The system is an effective tool to help adhere to emerging SOMAP regulations, and provides a faster, cheaper, and easier alternative to traditional testing facilities.
Cloud transformation of Forsway’s hybrid satellite/terrestrial Xtend Hub for quicker deployments, closer integration with 5G/NFV networks, and higher innovation speed. The project is the first step towards creating a highly optimized system for connecting vehicles with a combination of satellite and terrestrial technologies.
SkyMon VSAT is a fully integrated VSAT monitoring and geolocation solution that closes the last gap to resolve satellite interference. It allows operators to detect, identify and locate satellite interferences originating from VSAT networks. SkyMon VSAT is the latest member in the market leading Atos SkyMon product range, a highly comprehensive toolset to effectively mitigate satellite interference.